Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\)
Vậy.....
Ta có: \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=29\)
\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)
\(=9\)
Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x
b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)
\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)
\(A=x^2-16-6x-2x^2+x^2+6x+9=-7\\ B=\left(x^2+4\right)\left(x^2-4\right)-x^4+9\\ B=x^4-16-x^4+9=-7\)
a) \(A=\left(x+4\right)\left(x-4\right)-2x\left(3+x\right)+\left(x+3\right)^2\)
\(=x^2-16-2x^2-6x+x^2+6x+9=-7\)
b) \(B=\left(x^2+4\right)\left(x+2\right)\left(x-2\right)-\left(x^2+3\right)\left(x^2-3\right)\)
\(=\left(x^2+4\right)\left(x^2-4\right)-\left(x^4-9\right)\)
\(=x^4-16-x^4+9=-7\)
Bài 1:
\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)
\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y-z\right)^2\)
\(=x^2\)
Bài 2:
đk: \(x\ne\left\{0;-1;-2;-3;-4;-5\right\}\)
Xét BT trái ta có:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+5}\)
\(=\frac{5}{x\left(x+5\right)}=\frac{5}{x^2+5x}\)
GT của biểu thức lớn sẽ là: \(\frac{5}{x^2+5x}\cdot\frac{x^2+5x}{5}=1\) không phụ thuộc vào biến
=> đpcm
Bài 1.
( x - y + z ) + ( z - y )2 + ( x - y + z )( 2y - 2z )
= ( x - y + z ) - 2( x - y + z )( z - y ) + ( z - y )2
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
Bài 2. ĐKXĐ tự ghi nhé :))
\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right)\times\left(\frac{x^2+5x}{5}\right)\)
\(=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+5}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{\left(x+5\right)}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{x+5-x}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{5}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}=1\)
=> đpcm
a, \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\forall x\)
\(\Rightarrowđpcm\)
b, \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\forall x\)
\(\Rightarrowđpcm\)
a) Sửa đề: \(A=\left(3x-2\right)\left(9x^2+6x+4\right)-3x\left(9x^2-2\right)\)
\(=27x^3-8-27x^3+6=-2\)
b: Ta có: \(B=\left(3x+5\right)^2+\left(6x+10\right)\left(2-3x\right)+\left(2-3x\right)^2\)
\(=\left(3x+5+2-3x\right)^2\)
=49
\(a,\frac{x^2+2.x.5+5^2+x^2-2.x.5+5^2}{x^2+25}\)
\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)
Vậy giá trị biểu thức không phụ thuộc vào x
\(b,\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\frac{29\left(x^2+1\right)}{x^2+1}=29\)
Vậy gt biểu thức không phụ thuộc vào x
a) \(\frac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\frac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\frac{2\left(x^2+25\right)}{x^2+25}=2\)
\(\Rightarrow\)đpcm
b) \(\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\frac{29\left(x^2+1\right)}{x^2+1}=29\)
\(\Rightarrow\)đpcm