K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

tìm x , y , z ,t biết

x/y = 2/5 và x . y = 40

Ta có: \(\dfrac{x}{y}=\dfrac{2}{5}=>\dfrac{x}{2}=\dfrac{y}{5}\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\) => x=5k, y=2k

Ta có : x . y = 5k . 2k = 40

=> 10k = 40 => k = 4

=> k = 2 hoặc -2

=> x = 5k = 5 . 2 =10

y = 2k =2 . 2 =4

hay x = 5k = 5. (-2) = -10

y = 2k = 2 . (-2) = -4

Vậy x = 10, y = 4 hoặc x = -10, y = -4

14 tháng 1 2019

\(xy+y+x=0\)

\(\Rightarrow y\left(x+1\right)+x+1=1\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)=1\cdot1=\left(-1\right)\left(-1\right)\)

lập bảng

14 tháng 1 2019

Ta có : x+y+xy=0

   x(y+1) + y    = 0

  x(y+1) + y+ 1 =1

  (y+1)(x+1)      = 1

Vì x, y \(\in Z\)

=> x+1; y+1 là ước của 1

Ta có bảng sau:

x+11-1
x0-2
y+11-1
y0-2

Vậy x=y=0 hoặc x=y=-2 

k tui nha

26 tháng 2 2021

Ta có x(y-2)= 3.1=1.3=-1. -3= -3. -1

Xét từng trường hợp

TH1: x=3

          y-2=1 => y=3

TH2 x=1

       y-2=3 => y=5

Bạn làm tiếp với các Th tiếp theo nhé

25 tháng 9 2018

a,\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}=\frac{3x-2y+4z}{12-4+12}=\frac{20}{20}=1\)

Suy ra:\(\hept{\begin{cases}\frac{x}{4}=1\\\frac{y}{2}=1\\\frac{z}{3}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\\z=3\end{cases}}\)

25 tháng 9 2018

b, Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{6}=\frac{x-y}{2-6}=\frac{10}{-4}=-\frac{5}{2}\)

Suy ra:\(\hept{\begin{cases}\frac{x}{2}=-\frac{5}{2}\\\frac{y}{6}=-\frac{5}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-15\end{cases}}}\)

15 tháng 10 2018

\(\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0.\)

\(\text{Ta có}\hept{\begin{cases}\left|2x^2-27\right|^{2019}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\text{Mà}\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)

\(\Rightarrow\hept{\begin{cases}\left|2x^2-27\right|^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(2x-27\right)^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-27=0\\5y+12=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=27\\5y=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}}}}}\) 

\(\text{Vậy}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}\) 

2 tháng 7 2019

Cho mk lời giải đầy đủ đi

28 tháng 10 2018

2xy - x + 2y = 13

\(\Leftrightarrow\) 2y(x + 1) - x - 1 = 12

\(\Leftrightarrow\) (2y - 1)(x + 1) = 12

Vì y là số tự nhiên 2y - 1 là ước lẻ của 12. Lại có x + 1 là số tự nhiên nên 2y - 1 là số tự nhiên \(\Rightarrow2y-1\in\left\{1;3\right\}\). Ta có bảng sau:

2y - 113
x + 1124
y12
x113
28 tháng 10 2018

\(2xy-x+2y=13\)

\(x\left(2y-1\right)+2y-1=12\)

\(x.\left(2y-1\right)+\left(2y-1\right)=12\)

\(\left(2y-1\right).\left(x+1\right)=12\)

\(\Rightarrow2y-1,x+1\inƯ\left(12\right)=\left\{\pm1,\pm2,\pm3,\pm4,\pm6,\pm12,\right\}\)ư

mà 2y-1 là số lẻ =>\(2y-1\in\left\{\pm1,\pm3\right\}\)

=> \(x+1\in\left\{\pm12,\pm4\right\}\)

đến đây tự tính nha =)

27 tháng 7 2017

B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15

= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15 

( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3

25 tháng 7 2017

A= 2x^2+9y^2-6xy-6x-12y+2004

A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004

A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975

A= (x -3y +2)^2 + (x -5)^2 + 1975

( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3

D=-x^2+2xy-4y^2+2x+10y-8

D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5

D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5

D= - (x - y - 1)^2 - 3(y - 2)^2 +5 

=> Max D = 5 khi x= 3 và y=2

29 tháng 8 2016

a/

\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)

\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)

+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z

+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z

b/

\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)

=> m=y

+

29 tháng 8 2016

cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha