So sánh 3^109 và 2^103
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có:\(\frac{1}{101}< \frac{1}{100}\)
\(\frac{1}{102}< \frac{1}{100}\)
........................
\(\frac{1}{109}< \frac{1}{100}\)
=>\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{109}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
(9 phân số)
\(=>\frac{1}{101}+\frac{1}{102}+...+\frac{1}{109}< \frac{9}{100}\)
\(S=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{109}\)
\(\Rightarrow S< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (9 số hạng \(\frac{1}{100}\))
\(\Rightarrow S< \frac{1}{100}.9\)
\(\Rightarrow S< \frac{9}{100}\)
b) Ta có: \(\frac{1}{101}>0\)
\(\frac{1}{102}>0\)
...............,....
\(\frac{1}{200}>0\)
\(\Rightarrow S>0\left(1\right)\)
Lại có: \(\frac{1}{101}< \frac{1}{100}\)
\(\frac{1}{102}< \frac{1}{100}\)
......................
\(\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow S< \frac{1}{100}.100\)
\(\Rightarrow S< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< S< 1\)
Vậy S ko là số tự nhiên
a, ta có 1/101<1/100; 1/102<1/100;...;1/109<1/100
=> S=1/101+1/102+...+1/109< 1/100+1/100+...+1/100=9/100
=>S<9/100
b,ta thấy S luôn >0
S=1/101+1/102+...+1/200<1/100+1/100+...+1/100=1
=>S<1
=>0<S<1 => S không phải số tự nhiên
Vậy thì sửa lại đề là \(\frac{102}{103}\) và \(\frac{103}{104}\)
Bg
Ta có: \(\text{}\frac{102}{103}+\frac{1}{103}=1\)và \(\frac{103}{104}+\frac{1}{104}=1\)
Vì \(\frac{1}{103}>\frac{1}{104}\)
Nên \(\frac{102}{103}< \frac{103}{104}\)
Vậy \(\frac{102}{103}< \frac{103}{104}\)
102/103 + 1/103 = 1 => 102/103 + 2/206 = 1
103/105 +2/105 = 1
2/105 > 2/206
=> 102/103 < 103/105
a,Ta có phân số chung gian 123/343. mà:123/341>123/343(so sánh mẫu số khi tử bằng nhau)vaf123/343>103/343.
Qua 2 so sánh trên có thể chứng minh:123/341>103/343.
B,Ta có :1-105/107=2/107 và 1-107/109=2/109.
Mà:2/107>2/109.Vậy 105/107<107/109.(So sánh phần bù)
\(3^{109}>3^{103}>2^{103}\)
Rõ hơn ik bạn