So sách:
A = 1+ 3 + 3 mũ 2 + 3 mũ 3+...+3 mũ 2018
và B = 3 mũ 2019 - 1
thanks!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ko ghi đề
\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)
Mấy cái khác cg lm như v (b thì 3b)
Nhớ đúng mk nhá
S = 1-3 + 32 - 33 + ..+ 32018 - 32019
=> 3S = 3 - 32 + 33 - 34 +...+ 32019 - 32020
=> 3S + S = 1 - 32020
4S = 1 - 32020
\(S=\frac{1-3^{2020}}{4}\)
\(A=1+2+2^2+.....+2^{2018}\)
\(\Leftrightarrow2A=2+2^2+....+2^{2018}+2^{2019}\)
\(\Leftrightarrow2A-A=\left(2+2^2+....+2^{2019}\right)-\left(1+2+2^2+....+2^{2018}\right)\)
\(\Leftrightarrow A=2^{2019}-1< 2^{2019}\)
Vậy \(A< 2^{2019}\)
#)Giải :
\(S=3+3^2+3^3+...+3^{2019}\)
\(\Rightarrow3S=3^2+3^3+3^4+...+3^{2020}\)
\(\Rightarrow3S-S=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+...+3^{2019}\right)\)
\(\Rightarrow2S=3^{2020}-3\)
\(\Rightarrow S=\frac{3^{2020}-3}{2}\)
từng số hạng của tổng S chia hết cho 3 nên tổng S chia hết cho 3
#)Giải :
\(S=3+3^2+3^3+...+3^{2019}\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)
\(S=3\left(1+3+9\right)+3^2\left(1+3+9\right)+...+3^{2017}\left(1+3+9\right)\)
\(S=13\left(3+3^3+...+3^{2017}\right)\)chia hết cho 3 ( đpcm )
s = 3^1 +3^2 + 3^3 +....+ 3^2017 + 3^2018 + 3^2019
= ( 3^1 +3^2 + 3^3) +...+ ( 3^2017 + 3^2018 + 3^2019 ) ( 2019 : 3 =673 # chia hết nên có thể ghép cặp như vậy)
= 3( 1+ 3 +3^2 )+ 3^4( 1+ 3 +3^2)+...+ 3^2017( 1+ 3 +3^2) ( háp dụng tính chất phân phối)
= 13( 3+ 3^4+....+3^2017) => chia hết cho 13
học tốt
Ta có :
\(A=1+3+3^2+3^3+...+3^{2018}\)
\(3A=3+3^2+3^3+3^4+...+3^{2019}\)
\(3A-A=\left(3+3^2+3^3+3^4+...+3^{2019}\right)-\left(1+3+3^2+3^3+...+3^{2018}\right)\)
\(2A=3^{2019}-1=B\)
\(\Rightarrow\)\(A=\frac{1}{2}B\) hay \(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
A bé hơn B đó bạn