cho x/3=y/4=z/5. Tính giá trị biểu thức B=x+y-z/x+2y-z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\ne0\right)\)\(\Rightarrow\begin{cases}x=3k\\y=4k\\z=5k\end{cases}\)
Ta có: \(b=\frac{x+y-z}{x+2y-z}=\frac{3k+4k-5k}{3k+2.4k-5k}=\frac{2k}{3k+8k-5k}=\frac{2k}{6k}=\frac{1}{3}\)
Giải:
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow x=3k,y=4k,z=5k\)
Ta có:
\(B=\frac{x+y-z}{x+2y-z}=\frac{3k+4k-5k}{3k+8k-5k}=\frac{\left(3+4-5\right)k}{\left(3+8-5\right)k}=\frac{2k}{6k}=\frac{1}{3}\)
Vậy \(B=\frac{1}{3}\)
Bài làm:
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=K\hept{\begin{cases}x=3K\\y=4K\\z=5K\end{cases}}\)
\(\Rightarrow\frac{x+y-z}{x+2y-z}\)
\(\Rightarrow\frac{3K+4K-5K}{3K+2\left(4K\right)-5K}\)
\(\Rightarrow\frac{3K+4K-5K}{3K+8K-5K}\)
\(\Rightarrow\frac{K\left(3+4-5\right)}{K\left(3+8-5\right)}\)
\(\Rightarrow\frac{3+4-5}{3+8-5}=\frac{2}{6}\)
Vậy biểu thức B = \(\frac{2}{6}\)
khó quá ?????????????????????????????????????????????????????
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{k.\left(2-5+7\right)}{k.\left(2+10-7\right)}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
đặt x/2=y/6=z/7=k
suy ra x-y+z/x+2-z = 2k-5k+7k/2k10+7k = k(2-5+70/k(2+10-70 = 4/5
vậy A=4/5
Đặt: \(\frac{x}{2}\)+\(\frac{y}{5}\)+\(\frac{z}{7}\)=k
=>x=2k; y=5k; z=7k
Theo bài ra ta có:
A=\(\frac{x-y+z}{x-2y-z}\)=\(\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}\)=\(\frac{4k}{5k}\)=\(\frac{4}{5}\)
=>A=\(\frac{4}{5}\)
theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}=\frac{x-y+z}{2-5+7}=\frac{x+2y-z}{2+10-7}=\frac{x-y+z}{4}=\frac{x+2y-z}{5}\)
=>\(\frac{x-y+z}{4}=\frac{x+2y-z}{5}\)
theo tính chất tỉ lệ thức ta có;
\(\frac{x-y+z}{4}=\frac{x+2y-z}{5}\Rightarrow\frac{4}{5}=\frac{x-y+z}{x+2y-z}\)
vậy A = \(\frac{4}{5}\)
Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow x=2k,y=5k,z=7k\)
Ta có: \(A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}=\frac{k\left(2-5+7\right)}{2k+10k-7k}=\frac{k4}{\left(2+10-7\right)k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
a) A = x - y + z + z + y + x - 2y
A = (x + x) + (-y + y) + (z + z) - 2y
A = 2x + 0 + 2z - 2y
A = 2 .(x + z - y)
b) Thay x = 3 ; y = -1 ; z = 2 vào biểu thức A , ta được :
A = 2 .[3 + 2 - (-1)]
A = 12
Vậy A = 12
Chúc bạn học tốt !
x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0
<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0
<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z
Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )
Thay ( 1 ) vào A , ta được :
\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)
Vậy A = 2
Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)
Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)