Tìm a,b,c biết
(ax+b)(x2-cx+2)=x3+x-2 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(Q\left(2\right).Q\left(-1\right)=\left(4a+2b+c\right)\left(a-b+c\right)=\left(5a+b+2c-a+b-c\right)\left(a-b+c\right)\)
\(=\left(-a+b-c\right)\left(a-b+c\right)=-\left(a-b+c\right)^2\le0\)
b/
Q(x) = 0 với mọi x, suy ra các điều sau:
\(\Rightarrow Q\left(0\right)=c=0\); \(Q\left(1\right)=a+b+c=a+b=0\); \(Q\left(-1\right)=a-b+c=a-b=0\)
\(\Rightarrow\left(a+b\right)+\left(a-b\right)=0\text{ và }\left(a+b\right)-\left(a-b\right)=0\)\(\Leftrightarrow2a=0\text{ và }2b=0\Leftrightarrow a=b=0\)
Vậy \(a=b=c=0\)
A(x-3) + B.(x -1) = A.x - 3.A + B.x - B = (A+B). x - (3A + B) = 3x -1
=> A + B = 3 và 3A + B = 1
=> (3A + B) - (A+B) = 2A = 1 - 3 = -2 => A = -1
=> B = 3 - A = 4
a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!
Ta có: \(A\left(2\right)=4a+2b+c\)
\(A\left(-1\right)=a-b+c\)
Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
Suy ra \(A\left(2\right)=-A\left(-1\right)\)
Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)
b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)
\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)
Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)
Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)
\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)
\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)
Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)
Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)
Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)
Đúng ko ta?
+) ta có: \(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)
\(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)
\(f\left(2\right)=a.2^3+b.2^2+c.2+d=8a+4b+2c+d\)
Nếu f(x) có g/trị nguyên vs mọi x \(\Rightarrow\) d ; a+b+c+d ; 8a+4b+2c+d nguyên
Do d nguyên \(\Rightarrow\) a+b+c nguyên
(a+b+c+d)+(a+b+c+d)+2b nguyên\(\Rightarrow\)2b nguyên\(\Rightarrow\)6b nguyên
+) ta lại có: \(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)
mà f(0) nguyên nên d nguyên
\(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)
\(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d\)
\(\Rightarrow f\left(1\right)+f\left(-1\right)=2b+2d\)
\(\Rightarrow2b=f\left(1\right)+f\left(-1\right)-2d\)\(\Rightarrow\)\(2b\)nguyên
mặt khác: f(2)= 8a+4b+2c+d
\(\Rightarrow\) f(2) - 2f(1) = 6a-2b+d
\(\Rightarrow\) 6a = f(2) - 2f(1)+2b-d
\(\Rightarrow\) 6a nguyên
vậy f(x) = ax^3 + bx^2 + cx + d có giá trị nguyeenvs mọi x nguyên khi và chỉ khi 6a ; 2b ; a+b+c và d là các số nguyên
Bài này có 2 vế nha bn, mk c/m hết r đó, nếu bn thấy dài wa thì thu gọn lại nha! chúc bn hc tốt!
nhìn thì dài nhưng ko dài lắm đâu, tại mk dùng cỡ chữ to vài chỗ nên nó dài thôi. bài lm ko dài bn cứ lm đi, đừng ngại!
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(\Leftrightarrow2x^2+16x+32-x^2+4=0\)
\(\Leftrightarrow x^2+16x+36=0\)
\(\Leftrightarrow x^2+16x+64=28\)
\(\Leftrightarrow\left(x+8\right)^2=28\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=\sqrt{28}-8\\x_2=-\sqrt{28}-8\end{cases}}\)
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(2x^2+16x+32-x^2+4=0\)
\(x^2+16x+36=0\)
\(x^2+16x+64=28\)
\(\left(x+8\right)^2=28\)
bình phương thì chia lm 2 trường hợp
lm tiếp phần sau
Ta có \(\left(ax+b\right).\left(x^2-cx+2\right)=ax^3-acx^2+2ax+bx^2-bcx+2b\)
\(=ax^3+\left(b-ac\right)x^2+\left(2a-bc\right)x+2b\)
Đồng nhất thức hệ số với \(x^3+x-2\)ta được :
\(a=1\);\(b-ac=0\);\(2a-bc=1\);\(2b=-2\)
Do đó \(a=1;b=-1\)có \(b-ac=0\Rightarrow c=\frac{b}{a}=-\frac{1}{1}=-1\)
Thay \(a=1;b=-1;c=-1\)vào \(2a-bc=1\)
thì \(2.1-\left(-1\right).\left(-1\right)=1\)(đúng)
Vậy \(a=1;b=-1;c=-1\)