K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

Ta có \(\left(ax+b\right).\left(x^2-cx+2\right)=ax^3-acx^2+2ax+bx^2-bcx+2b\)

\(=ax^3+\left(b-ac\right)x^2+\left(2a-bc\right)x+2b\)

Đồng nhất thức hệ số với \(x^3+x-2\)ta được :

\(a=1\);\(b-ac=0\);\(2a-bc=1\);\(2b=-2\)

Do đó \(a=1;b=-1\)có \(b-ac=0\Rightarrow c=\frac{b}{a}=-\frac{1}{1}=-1\)

Thay \(a=1;b=-1;c=-1\)vào \(2a-bc=1\)

thì \(2.1-\left(-1\right).\left(-1\right)=1\)(đúng)

Vậy \(a=1;b=-1;c=-1\)

12 tháng 7 2015

a/

\(Q\left(2\right).Q\left(-1\right)=\left(4a+2b+c\right)\left(a-b+c\right)=\left(5a+b+2c-a+b-c\right)\left(a-b+c\right)\)

\(=\left(-a+b-c\right)\left(a-b+c\right)=-\left(a-b+c\right)^2\le0\)

b/

Q(x) = 0 với mọi x, suy ra các điều sau:

\(\Rightarrow Q\left(0\right)=c=0\)\(Q\left(1\right)=a+b+c=a+b=0\)\(Q\left(-1\right)=a-b+c=a-b=0\)

\(\Rightarrow\left(a+b\right)+\left(a-b\right)=0\text{ và }\left(a+b\right)-\left(a-b\right)=0\)\(\Leftrightarrow2a=0\text{ và }2b=0\Leftrightarrow a=b=0\)

Vậy \(a=b=c=0\)

3 tháng 5 2015

A(x-3) + B.(x -1) = A.x - 3.A + B.x - B = (A+B). x - (3A + B) = 3x -1

=> A + B = 3 và 3A + B = 1

=> (3A + B) - (A+B) = 2A = 1 - 3 = -2 => A = -1

=> B = 3 - A = 4

22 tháng 4 2019

a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!

Ta có: \(A\left(2\right)=4a+2b+c\) 

\(A\left(-1\right)=a-b+c\)

Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)

Suy ra \(A\left(2\right)=-A\left(-1\right)\)

Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)

b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)

\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)

Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)

Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)

\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)

\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)

Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)

Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)

Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)

Đúng ko ta?

25 tháng 4 2018

+) ta có: \(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)

        \(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)

       \(f\left(2\right)=a.2^3+b.2^2+c.2+d=8a+4b+2c+d\)

Nếu f(x) có g/trị nguyên vs mọi x \(\Rightarrow\) d ; a+b+c+d ; 8a+4b+2c+d nguyên

Do d nguyên \(\Rightarrow\) a+b+c nguyên

                             (a+b+c+d)+(a+b+c+d)+2b nguyên\(\Rightarrow\)2b nguyên\(\Rightarrow\)6b nguyên 

+) ta lại có: \(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)

mà f(0) nguyên nên d nguyên

   \(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)

 \(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d\)

\(\Rightarrow f\left(1\right)+f\left(-1\right)=2b+2d\)

\(\Rightarrow2b=f\left(1\right)+f\left(-1\right)-2d\)\(\Rightarrow\)\(2b\)nguyên

mặt khác: f(2)= 8a+4b+2c+d 

     \(\Rightarrow\) f(2) - 2f(1) = 6a-2b+d

     \(\Rightarrow\) 6a = f(2) - 2f(1)+2b-d

     \(\Rightarrow\) 6a nguyên

vậy f(x) = ax^3 + bx^2 + cx + d có giá trị nguyeenvs mọi x nguyên khi và chỉ khi 6a ; 2b ; a+b+c và d là các số nguyên

Bài này có 2 vế nha bn, mk c/m hết r đó, nếu bn thấy dài wa thì thu gọn lại nha! chúc bn hc tốt!

25 tháng 4 2018

nhìn thì dài nhưng ko dài lắm đâu, tại mk dùng cỡ chữ to vài chỗ nên nó dài thôi. bài lm ko dài bn cứ lm đi, đừng ngại!

9 tháng 10 2019

\(2\left(x^2+8x+16\right)-x^2+4=0\)

\(\Leftrightarrow2x^2+16x+32-x^2+4=0\)

\(\Leftrightarrow x^2+16x+36=0\)

\(\Leftrightarrow x^2+16x+64=28\)

\(\Leftrightarrow\left(x+8\right)^2=28\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=\sqrt{28}-8\\x_2=-\sqrt{28}-8\end{cases}}\)

\(2\left(x^2+8x+16\right)-x^2+4=0\)

\(2x^2+16x+32-x^2+4=0\)

\(x^2+16x+36=0\)

\(x^2+16x+64=28\)

\(\left(x+8\right)^2=28\)

bình phương thì chia lm 2 trường hợp 

lm tiếp phần sau