Cho hình bình hành ABCD có 2 đường cao AE, AF. Cho AC = 25cm, EF = 24cm. Tính khoảng cách từ A đến trực tâm H của ΔAEF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trực tâm của tam giác AEF
EF^2 = AC^2 - EF^2 = 49
=> EF =7
===================================
c/minh:
Giả sử AE _|_ CD, AF _|_ BC, Kẻ CM _|_ AB
Ta c/m AHFM là h.b.h và tam giác MEF vuông tại F
Ta có: FH _|_AE (tính chất trực tâm)
AB _|_ AE (gt)
=> AB//FH (1)
Do A, M, F,C , E nằm trên đường tròn đường kính AC (*)
=> ^CMF = ^CEF (góc chắn cung CF)
mà ^HAE = ^CEF (góc có cạnh tương ứng vuông góc)
=> ^HAE = ^CMF
=> MF//AH (2)
Từ (1), (2) => AHFM là h.b.h
=> AH =MF
do (*) M, F,C , E nằm trên đường tròn đường kính AC (*)
Mà ^MCE = 90o => ME là đường kính của đường tròn nói trên
=> ^MFE = 90o
=> MF^2 = ME^2 - EF^2 = AC^2 - EF^2 (AC =ME do AMCE là h.c.n)
https://lazi.vn/users/dang_ky?u=kieu-anh.pham4
Gọi H là trực tâm của tam giác AEF
EF^2 = AC^2 - EF^2 = 49
=> EF =7
===================================
c/minh:
Giả sử AE _|_ CD, AF _|_ BC, Kẻ CM _|_ AB
Ta c/m AHFM là h.b.h và tam giác MEF vuông tại F
Ta có: FH _|_AE (tính chất trực tâm)
AB _|_ AE (gt)
=> AB//FH (1)
Do A, M, F,C , E nằm trên đường tròn đường kính AC (*)
=> ^CMF = ^CEF (góc chắn cung CF)
mà ^HAE = ^CEF (góc có cạnh tương ứng vuông góc)
=> ^HAE = ^CMF
=> MF//AH (2)
Từ (1), (2) => AHFM là h.b.h
=> AH =MF
do (*) M, F,C , E nằm trên đường tròn đường kính AC (*)
Mà ^MCE = 90o => ME là đường kính của đường tròn nói trên
=> ^MFE = 90o
=> MF^2 = ME^2 - EF^2 = AC^2 - EF^2 (AC =ME do AMCE là h.c.n)
Gọi H là trực tâm của taam giác ta có
EF^2 = AC^2 - EF^2 = 49
=> EF =7
===================================
c/minh:
Giả sử AE _|_ CD, AF _|_ BC, Kẻ CM _|_ AB
Ta c/m AHFM là h.b.h và tam giác MEF vuông tại F
Ta có: FH _|_AE (tính chất trực tâm)
AB _|_ AE (gt)
=> AB//FH (1)
Do A, M, F,C , E nằm trên đường tròn đường kính AC (*)
=> ^CMF = ^CEF (góc chắn cung CF)
mà ^HAE = ^CEF (góc có cạnh tương ứng vuông góc)
=> ^HAE = ^CMF
=> MF//AH (2)
Từ (1), (2) => AHFM là h.b.h
=> AH =MF
do (*) M, F,C , E nằm trên đường tròn đường kính AC (*)
Mà ^MCE = 90o => ME là đường kính của đường tròn nói trên
=> ^MFE = 90o
=> MF^2 = ME^2 - EF^2 = AC^2 - EF^2 (AC =ME do AMCE là h.c.n)
(((Làm theo hướng đó đúng rồi.. Tiếp nà )))
HFCE là hình bình hành (tự c/m)
=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)
Mà EC//AK => HF//AK
=> Δ ANK = Δ FNH (g.c.g)
=> AK=HF (2)
Từ (1) và (2) suy ra AK=EC. Mà AK//EC
=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC
=> O cũng là trung điểm của EK
=> Đpcm...
Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .
Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .
Ta có : OM , AH cùng vuông góc với EF nên OM // AH
=> M là trung điểm CH ( Vì O là trung điểm của AC )
Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .
Suy ra : HF // CE // AK
Dễ chứng minh △HNF = △KNA ( g.c.g )
Suy ra : Tứ giác AHFK là hình bình hành .
Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .
Suy ra : CKAE là hình chữ nhật .
Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )