K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

A B C a h k H M

b: Xét tứ giác ABCE có

M là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>CE//AB

c: Xét ΔHAB vuông tại H và ΔHKC vuông tại H có

HB=HC

góc HAB=góc HKC

=>ΔHAB=ΔHKC

=>HA=HK

Xét tứ giác ABKC có

H là trung điểm chung của BC và AK

AB=AC

=>ABKC là hình thoi

=>AC=CK

Xét ΔABC có

BM,AH là trung tuyến

BM cắt AH tại G

=>G là trọng tâm

=>3GH=AH

3GH+HC=AH+HC>AC=CK

4 tháng 1 2019

+) Xét tam giác EIA vuông tại I nên :

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Xét hai tam giác ABH và ∆EAI có:

AB = AE ( vì ABDE là hình vuông)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Suy ra: ∆ABH = ∆ EAI ( cạnh huyền – góc nhọn)

⇒ AH = EI ( hai cạnh tương ứng)

+) Tương tự hai tam giác vuông ACH và GAJ bằng nhau.

⇒ AH = GJ.

Suy ra EI = AH = GJ.

+) Xét ΔEKI và ΔGKJ có:

EI = GJ ( chứng minh trên)

∠(IKE) = ∠(JKG) (đối đỉnh).

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

do đó ΔEKI = ΔGKJ ( cgv – gn)

suy ra: KE = KG

Từ đó ta có K trung điểm của EG. Vậy AK là trung tuyến của tam giác AEG.

14 tháng 4 2023

a; 

có Abc là tam giac cân taji A (gt)

=> AH là đg cao và là ddg trùng tuyến và là đg phan giác 

=> H là trung điểm của BC

Xét tam giác ABH va ACH có

1: có AH chung

2: HB=HC( CMT)

3: AB=AC (2 cạnh bên của tam giác ABC cân tại a)

=> 2 tam giác bằng nhau theo TH c.c.c

b;

xét 2 tam giác: AMB va CME có

AM=MC ( BM là trung tuyến=>m là trung điểm AC)

MB=ME (GT)

Góc AMB=Goc AMC (2 góc đối đỉnh)

=> 2tam giác bằng nhau theo TH (CGC)

=> góc CEm= góc ABM (2 góc tương ung trong 2 tam giác bằng nhau)

=> AB//CE (2 đg thằng có 2 góc đồng vị bằng nhau)

c;

có AB//CE (CMt)

=> Góc ABC= góc BCK (2 góc so le trong)

xet 2 tam giác vuông ACH va KCH có

HC chung

goc KCH=ACH (cùng bằng góc ABC)

=> 2 tam giác bằng nhau

=>HK=AH (1)

xet Tam gioác ABC có am là trung tuyên tại M; BM là trung tuyến

=> G là trọng tâm

=> HG= 1/3 AH (tinh chât trọng tâm của tam giác) (2)

tù 1 và 2 => HG=1/3 HK => HK=3HG(3)

Trong Tam giác KHC có 

CK< HC+HK (4)

Từ 3 và 4 => KC< HC+3HG (dieu phai chung minh)

 

a: XétΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=BC/2=18(cm)

nên AH=24(cm)

Bạn nói rõ AB và AC bằng bao nhiêu đi bạn?

5 tháng 4 2021

AB=6, AC=8 ạ

 

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

=>AD=BC

mà BC=10cm

nên AD=10cm

b: Xét ΔMHA vuông tại H và ΔMKD vuông tại K có

MA=MD

\(\widehat{HMA}=\widehat{KMD}\)(hai góc đối đỉnh)

Do đó: ΔMHA=ΔMKD

=>MH=MK

=>M là trung điểm của HK

Xét tứ giác AHDK có

M là trung điểm chung của AD và HK

=>AHDK là hình bình hành

=>AK//DH

c: E đối xứng A qua BC

=>BC là đường trung trực của AE

=>BC\(\perp\)AE tại trung điểm của AE(1)

Ta có: BC\(\perp\)AE

BC\(\perp\)AH

AE,AH có điểm chung là A

Do đó: E,A,H thẳng hàng(2)

Từ (1) và (2) suy ra H là trung điểm của AE

Xét ΔADE có

H,M lần lượt là trung điểm của AE,AD

=>HM là đường trung bình của ΔADE

=>HM//DE

mà \(H\in BC;M\in\)BC

nên DE//BC

Xét ΔCAE có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAE cân tại C

=>CA=CE

mà CA=BD(ABDC là hình chữ nhật)

nên CE=BD

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

Hình thang BEDC có BD=CE

nên BEDC là hình thang cân