K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

a) \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(A=\left(x^2+5x\right)^2-6^2\)

\(A=\left(x^2+5x\right)^2-36\)

\(\left(x^2+5x\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow Amin=-36\Leftrightarrow x^2+5x=0\)

\(\Rightarrow x\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

b) \(B=x^2-2x+y^2+4y+8\)

\(B=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+3\)

\(B=\left(x-1\right)^2+\left(y+2\right)^2+3\)

\(\left(x-1\right)^2\ge0\) với mọi x

\(\left(y+2\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)

\(\Rightarrow Bmin=3\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

c) \(C=x^2-4x+y^2-8y+6\)

\(C=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)

\(C=\left(x-2\right)^2+\left(y-4\right)^2-14\)

\(\left(x-2\right)^2\ge0\) với mọi x

\(\left(y-4\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) với mọi x,y

\(\Rightarrow Cmin=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

a: \(A=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)

Dấu '=' xảy ra khi x=1 và y=-2

b: \(B=x^2-4x+4+y^2-8y+16-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)

Dấu '=' xảy ra khi x=2 và y=4

1 tháng 11 2017

D = (x-1).(x+2).(x+3).(x+6)

= (x2 + 5x - 6).(x2 + 5x + 6)

= (x2 + 5x)2 + 6x.(x2+5x)-6(x2 + 5x) - 36

= (x2 + 5x)2 - 36 \(\ge\) -36 với mọi x

Vậy D có GTNN = - 36 khi x2 + 5x = 0

hay x = 0; x = 5

A = x2 - 2x + y2 + 4y + 8

= (x2 - 2x + 1) + (y2 + 2.2y + 4) + 3

= (x-1)2 + (y+2)2 + 3 \(\ge\) 3 với mọi x,y

Vậy A có GTNN = 3

C = x2 - 4x + y2 - 8y + 6

= (x2 - 4x + 4) + (y2 - 8y + 16) - 12

= (x-2)2 + (y-4)2 - 12 \(\ge\) -12 với mọi x;y

Vậy C có GTNN = -12

B = 2x2 - 4x + 10

= x2 + (x2 - 4x + 4) + 6

= x2 + (x-2)2 + 6 \(\ge\) 6 với mọi x

Vậy B có GTNN = 6

15 tháng 9 2016

a) \(A=x^2+6x+11\)

\(A=x^2+6x+9+2\)

\(A=\left(x+3\right)^2+2\)

Có: \(\left(x+3\right)^2\ge0\Rightarrow\left(x+3\right)^2+2\ge2\)

Dấu = xảy ra khi: \(\left(x+3\right)^2=0\Rightarrow x+3=0\Rightarrow x=-3\)

Vậy: \(Min_A=2\) tại \(x=-3\)

b) \(B=4x-x^2+1\)

\(B=-x^2+4x-4+5\)

\(B=-\left(x-2\right)^2+5\)

\(B=5-\left(x-2\right)^2\)

Có: \(\left(x-2\right)^2\ge0\)

\(\Rightarrow5-\left(x-2\right)^2\le5\)

Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy: \(Max_B=5\) tại \(x=2\)

20 tháng 1 2018

d, (x-1) (x+2) (x+3) (x+6)
=(x^2+2x-x-2) (x^2+6x+3x+18)
=(x^2-x^2) + (2x-x+6x-3x) = (-2+18)
=0            + (-8x)              =16
=                    x                =16:(-8)
=                  x                  =-2

25 tháng 6 2019

a, A = x^2 + 6x + 11

= x^2 + 6x + 9 + 2

= (x + 3)^2 + 2

làm tiếp

25 tháng 6 2019

b, x^2 - 20x + 101

= x^2  20x + 100 + 1

= (x - 10)^2 + 1

có (x - 10)^2 > 0 => (x - 10)^2 +  > 1

29 tháng 5 2016

a/ Ta có:

\(A=x^2-6x+11\)

\(A=x\cdot x-3x-3x+3\cdot3+2\)

\(A=x\left(x-3\right)-3\left(x-3\right)+2\)

\(A=\left(x-3\right)\left(x-3\right)+2\)

\(A=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\ge0\)

Nên GTNN của \(\left(x-3\right)^2\)là 0

=> \(A_{min}=0+2=2\)

29 tháng 5 2016

mình chỉ biết a. thôi

a) ta có : \(A=x^2-6x+11\)

\(A=x.x-3x-3x+3.3+2\)

\(A=x\left(x-3\right)-3\left(x-3\right)+2\)

\(A=\left(x-3\right)\left(x-3\right)+2\)

\(A=\left(x-3\right)^2+2\)

vì \(\left(x-3\right)^2\ge0\)

nên GTNN của \(\left(x-3\right)^2\)là \(0\)

\(\Rightarrow\)\(A_{min}\)\(=0+2=2\)