K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^0=1\)

Vì theo quy ước

-\(x^1=x\)

-\(x^0=1\)

nên \(x^0=1\)

Câu a :))

Hàm số đã cho đồng biến .

giải thích :

Do \(m^2\ge0\forall m\)

\(\Rightarrow m^2+1>0\)

Vậy hàm số trên đồng biến.

16 tháng 1 2019

Giả sử đths đi qua điểm cố định ( x0;y0 )

Ta có y0 = ( m2 +1 )x0 - 1

  <=> y0 = m2 x0 +x0 -1

<=> y0 -x0 +1 -m2x0 = 0

Để pt nghiệm đúng với mọi m \(\Leftrightarrow\hept{\begin{cases}y_0-x_0+1=0\\x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}y_0=-1\\x_0=0\end{cases}}}\)

Vậy đths luôn đi qua điểm cố định ( 0 ; -1 )

29 tháng 11 2017

- Xét hàm số   f ( x )   = x 3 + x - 1 , ta có f(0) = -1 và f(1) = 1 nên: f(0).f(1) < 0.

- Mặt khác:    f ( x )   = x 3 + x - 1  là hàm đa thức nên liên tục trên [0;1].

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 1)

- Suy ra    f ( x )   = x 3 + x - 1 đồng biến trên R nên phương trình    x 3 + x - 1 = 0 có nghiệm duy nhất  x 0   ∈   ( 0 ; 1 ) .

- Theo bất đẳng thức Côsi:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 1)

26 tháng 10 2019

Đặt Giải sách bài tập Toán 11 | Giải sbt Toán 11

Suy ra g(x) xác định trên ( a ; b )   \   x 0 và Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác, f ( x )   =   f ( x 0 )   +   L ( x   −   x 0 )   +   ( x   −   x 0 ) g ( x ) nên

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy hàm số y = f(x) liên tục tại

25 tháng 10 2019

x0 là gì bạn

26 tháng 10 2019

x0 đó bạn

27 tháng 1 2017

Chọn C.

Điều kiện. x ≠ -1

Phương trình tương đương 

Lấy ln hai vế của , ta được 

Suy ra  x= 2 và P = 60.

31 tháng 7 2021

= x0(5 - x0)( x+ 8).

5 tháng 8 2017

Dễ thấy: \(x_0;y_0\ne 0\)

*)Xét \(x_0;y_0>0\) xài BĐT AM-GM

\(x^3+y^3+1\ge3\sqrt[3]{x^3y^3}=3xy\)

Xảy ra khi \(x=y=1\)

Khi đó \(\left(1+x_0\right)\left(1+\dfrac{1}{y_0}\right)\left(1+\dfrac{x_0}{y_0}\right)=8\)

*)Xét \(x_0;y_0<0\)\(\Rightarrow3xy>0;x^3+y^3+1\le0\) (loại)

5 tháng 8 2017

Bạn trả lời chi tiết hơn được ko

3 tháng 8 2019

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 

nên với dãy số ( x n ) bất kì, x n ∈ K \   x 0 và x n   →   x 0  ta luôn có 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ định nghĩa suy ra f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì f ( x n   )   >   1 kể từ một số hạng nàođó trởđi.

Nói cách khác, luôn tồn tạiít nhất một số x k ∈ K \   x 0 sao cho f ( x k )   >   1 .

22 tháng 10 2023

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng