K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a=b=c=d=1

=> a20.b11.c2011 = d2042 ( = 1)            (dpcm)

8 tháng 12 2015

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a =b=c =d

=> a20.b11.c2011 =d20.d11.d2011 =d20+11+2011 =d2042

17 tháng 11 2016

Bài 2: a)

Ta có: 2x=3y (=) \(\frac{x}{3}\)=\(\frac{y}{2}\) (=) \(\frac{x}{21}\)=\(\frac{y}{14}\)

5y=7z (=) \(\frac{z}{5}\)=\(\frac{y}{7}\) (=) \(\frac{z}{10}\)=\(\frac{y}{14}\)

Suy ra \(\frac{x}{21}\)=\(\frac{y}{14}\)=\(\frac{z}{10}\)

ta có \(\frac{x}{21}\)=\(\frac{3x}{63}\)

\(\frac{y}{14}\)= \(\frac{7y}{98}\)

\(\frac{z}{10}\)=\(\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{3x}{63}\)=\(\frac{7y}{98}\)=\(\frac{5z}{50}\)=\(\frac{3x-7y+5z}{63-98+50}\)=\(\frac{30}{15}\)=2

=) \(\frac{3x}{63}\)=2 (=) 3x=126 (=) x=42

\(\frac{7y}{98}\)=2 (=) 7y=196 (=) y=28

\(\frac{5z}{50}\)=2 (=) 5z=100 (=) z=20

Vậy x=42 ; y=28 ; z=20

17 tháng 11 2016

Có thể là bạn viết nhầm đề bài 2 đấy (5z thành 5y)

2 tháng 10 2015

bấm vào chỗ đúng đó nguyễn minh tâm

28 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau là xong

28 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

21 tháng 1 2018

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)

=>a=b=c=d

=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)

23 tháng 1 2018

Ta có:a/b=b/c=c/d=d/a

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1

=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)

Thay vào M sau đó tìm được M=2

15 tháng 11 2016

onl ko nt

15 tháng 11 2016

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) (đề bài)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\\\frac{d}{a}=1\end{cases}\Rightarrow\begin{cases}a=b\\b=c\\c=d\\d=a\end{cases}\)

\(\Rightarrow a=b=c=d\)

Thay \(b=a\) ; \(c=a\) ; \(d=a\) vào biểu thức \(M=\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\) ta có :
\(M=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}\)

\(M=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1}{2}\)

Vậy \(M=\frac{1}{2}\)