K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

`Answer:`

\(\frac{a+b}{3}=\frac{b+c}{3}=\frac{c+a}{10}\)

\(\Rightarrow\frac{a+b}{3}=\frac{b+c}{3}\)

\(\Rightarrow a+b=b+c\)

\(\Rightarrow a=c\)

Mặt khác ta có: \(\frac{b+c}{3}=\frac{c+a}{10}\)

\(\Rightarrow\frac{b+c}{3}=\frac{c+c}{10}\)

\(\Rightarrow\frac{b+c}{3}=\frac{2c}{10}\)

\(\Rightarrow\frac{b+c}{3}=\frac{c}{5}\)

\(\Rightarrow5\left(b+c\right)=3c\)

\(\Rightarrow5b+5c=3c\)

\(\Rightarrow5b=-2c\)

\(\Rightarrow b=-\frac{2}{5}c\)

Có `M=11a+20b-4c+2020`

`=>M=11c+20(-2/5c)-4c+2020`

`=>M=11c-8c-4c+2020`

`=>M=-c+2020`

25 tháng 11 2018

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{3}=\frac{b+c}{5}=\frac{c+a}{10}=\frac{a+b-b-c-c-a}{-12}=\frac{c}{6}\)

\(\Rightarrow\frac{a+b}{3}=\frac{c}{6}\Rightarrow\left(a+b\right).6=3c\Rightarrow6a+6b=3c\Rightarrow3a+3b=c\Rightarrow a+b=\frac{c}{3}\)

\(\frac{b+c}{5}=\frac{c}{6}\Rightarrow6b+6c=5c\Rightarrow6b=-c\Rightarrow b=\frac{-c}{6}\)

\(\frac{c+a}{10}=\frac{c}{6}\Rightarrow6c+6a=10c\Rightarrow6a=4c\Rightarrow3a=2c\Rightarrow a=\frac{2c}{3}\)

thay vào M ta có:

\(\frac{22c}{3}+\frac{-20c}{6}-c+2017=4c-c+2017=3c+2017\)

p/s: ko chắc :))

25 tháng 7 2020

ta có \(\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ca+4a^2}=\frac{11-\left(\frac{a}{b}\right)^3}{\frac{a}{b}+4}\cdot b+\frac{11-\left(\frac{b}{c}\right)^3}{\frac{b}{c}+4}\cdot c+\frac{11-\left(\frac{c}{a}\right)^3}{\frac{c}{a}+4}\cdot a\)

khi a=b=c=1 ta thấy đẳng thức xảy ra

xét \(f\left(x\right)=\frac{11-x^3}{x+4}\)ta có \(\frac{11-x^3}{x+4}\le-x+3\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\ge0\forall x>0\)

thay x bởi a/b ta được \(\frac{11-\left(\frac{a}{b}\right)^3}{\frac{a}{b}+4}\le-\frac{a}{b}+3\Leftrightarrow\frac{11b^3-a^3}{ab+4b^2}\le-a+3b\)

tương tự \(\hept{\begin{cases}\frac{11c^3-b^3}{bc+4c^2}\le-b+3c\\\frac{11ba^3-c^3}{ac+4a^2}\le-c+3a\end{cases}}\)

cộng các bđt cùng chiều ta được

\(\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ac+4a^2}\le2\left(a+b+c\right)=6\)

25 tháng 7 2020

\(\frac{11b^3-a^3}{ab+4b^2}\le3b-a\)

6 tháng 4 2017

Bài 1:

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)

Ta sẽ chứng minh nó là GTLN

Thật vậy ta cần chứng minh

\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)

\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng theo vế ta có:

\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)

Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng

Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)

Bài 3:

Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là

\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:

\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)

Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)

\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM

Đẳng thức xảy ra khi \(a=b=c=1\)

T/b:Vâng, rất giỏi :GT8:

4 tháng 4 2017

lần sau đăng từng câu 1 dc ko bn :)

15 tháng 4 2017

Đã thấy. Sửa đề: \(\sum\dfrac{11a^3-b^3}{4a^2+ab}\le2\left(a+b+c\right)\)

\(\sum\dfrac{11a^3-b^3}{4a^2+ab}=\sum\dfrac{12a^3-\left(a^3+b^3\right)}{4a^2+ab}=\sum\dfrac{12a^3-\left(a+b\right)\left(\left(a-b\right)^2+ab\right)}{4a^2+ab}\)

\(\le\sum\dfrac{12a^3-ab\left(a+b\right)}{4a^2+ab}=\sum\dfrac{a\left(3a-b\right)\left(4a+b\right)}{a\left(4a+b\right)}\)

\(=\sum\left(3a-b\right)=2\left(a+b+c\right)\)

15 tháng 4 2017

Đề bài: Cho \(a,b,c>0\). CMR \( \frac{11b^3-a^3}{ab+4b^2} + \frac{11c^3-b^3}{bc+4c^2} + \frac{11a^3-c^3}{ac+4a^2} \leq 2(a+b+c)\)

Bài giải

Ta chứng minh bổ đề \(\dfrac{11b^3-a^3}{4b^2+ab}\le3b-a\)

Thật vậy \(11b^3-a^3\le\left(ab+4b^2\right)\left(3b-a\right)\Leftrightarrow11b^3-a^3\le-a^2b-ab^2+12b^3\)

\(\Leftrightarrow a^3-a^2b-ab^2+b^3\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (đúng)

Tương tự cho2 BĐT còn lại ta cũng có:

\(\dfrac{11c^3-b^3}{4c^2+bc}\le3c-b;\dfrac{11a^3-c^3}{4a^2+ac}\le3a-c\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\left(3b-a\right)+\left(3c-b\right)+\left(3a-c\right)=2\left(a+b+c\right)=VP\)

a) A = -2a + 3b -4c +2a +3b +4c

    A = 6b

b) A = 0a + 6b + 0c

thay a = 2017 , b = -1 , c = -2018 ta có 

A= 0*2017 + 6*(-1) + 0*(-2018)

A = 6

k mk nha

a/ A=(-2a+3b-4c)-(-2a-3b-4c)

=-2a+3b-4c+2a+3b+4c

=6b

b/ giá trị của bt tại a=2017;b=-1;c=-2018 là

A=6.(-1)=-6

Vậy giá trị của A tai ...... là -6

8 tháng 3 2020

a) A= (-2a+3b-4c)-(-2a-3b-4c)

       = -2a+3b-4c+2a+3b+4c

       = 6b

b) A= 6b=6. (-1)=-6

8 tháng 3 2020

A= -2a +3b -4c +2a +3b +4c

A= 6 b

b) Với b = -1

A=6.(-1) = -6