K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

ý bạn là chứng minh \(\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)

tam giác ABC vuông tại A có AH là đường cao 

\(\Rightarrow HB.HC=AH^2\Rightarrow\sqrt{HB.HC}=AH\)

Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.HC\right)^2=BH^2.CH^2\)

tam giác AHB vuông tại H có HD là đường cao \(\Rightarrow BH^2=BD.BA\)

tam giác AHC vuông tại H có HF là đường cao \(\Rightarrow CH^2=CE.CA\)

\(\Rightarrow BH^2.CH^2=BD.BA.CE.CA=BD.CE.\left(AB.AC\right)\)

tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\Rightarrow BD.CE.BC.AH=AH^4\)

\(\Rightarrow BD.CE.BC=AH^3\Rightarrow\sqrt[3]{BD.CE.BC}=AH\)

\(\Rightarrow\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)

17 tháng 8 2022

Cậu ơi cho mình hỏi tại sao AH= (AH2)2=(BH.HC)2 vậy ạ?

31 tháng 10 2021

 b: Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(1\right)\)

Xét ΔABH vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(2\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(3\right)\)

Từ (1), (2) và (3) suy ra \(HB\cdot HC=AD\cdot AB=AE\cdot AC\)

20 tháng 7 2021

A B C H M N

Ta có : \(AB^2=BH.BC\)

\(AC^2=CH.BC\)

Chia vế với vế ta được : 

\(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)

20 tháng 7 2021

Tham khảo:undefinedundefined

14 tháng 9 2023

Mình ko hiểu

15 tháng 4 2020

A B C M H I K N O

Ta có : ΔABC vuông tại A(gt)

AM là đường trung tuyến ứng với BC ( M là trung điểm BC )

⇒ AM = BM ( Tính chất đường trung tuyến ứng với cạnh huyền trong Δ vuông)

⇒ ΔAMB cân tại M

 \(\Rightarrow\widehat{A_1}=\widehat{B}\left(1\right)\)

\(HI\perp AB\left(gt\right)\Rightarrow\widehat{HIA}=90^o\)

\(HK\perp AC\left(gt\right)\Rightarrow\widehat{HKA}=90^o\)

\(\widehat{A}=90^o\left(gt\right)\)

\(\Rightarrow AIHK\)có \(\widehat{A}=\widehat{HIA}=\widehat{HKA}=90^o\)

=> AIHK là hình CN ( dấu hiệu nhân biết )

Gọi N là giao điểm IK ; AH

=> NI = NA ( TÍnh chất hình chữ nhật) ⇒ ΔANI cân tại N 

 \(\Rightarrow\widehat{I_1}=\widehat{IAN}\left(3\right)\)Lại có \(\widehat{A_2}=\widehat{B}\)( cùng phụ với \(\widehat{C}\)) ( 2 )

Từ (1) và (2)

\(\Rightarrow\widehat{A_1}=\widehat{A}_2\left(4\right)\)Lại có : \(\widehat{IAN}+\widehat{A_2}=\widehat{A}=90^o\left(5\right)\)

Từ 3 ; 4 ; 5 

\(\Rightarrow\widehat{I_1}+\widehat{A_1}=90^o\)mà \(\widehat{I_1}+\widehat{A_1}+\widehat{INA}=180^o\)

\(\Rightarrow90^o+\widehat{INA}=180^o\)

\(\Rightarrow\widehat{INA}=90^o\Rightarrow AM\perp IK\left(đpcm\right)\)

19 tháng 10 2023

loading...  loading...  

11 tháng 9 2018

cho tap hop A = { 1;2;3;4;.......;n} . Tìm số tự nhiên n biết tổng các phần tử của A bằng 90