K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

? ko hiểu đề @@

3 tháng 9 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{2x+4y}{6+20}=\frac{28}{26}=\frac{14}{13}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{14}{13}\\\frac{y}{5}=\frac{14}{13}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{42}{13}\\y=\frac{70}{13}\end{cases}}}\)

Vậy,.........

27 tháng 6 2018

Theo tính chất dãy tỉ số bằng nhau

Ta có: \(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{2x}{6}=\frac{4y}{20}=\frac{2x+4y}{6+20}=\frac{28}{26}=\frac{14}{13}\)

=> x = 3 x 14/13 = 42/13

     y = 5 x 14/13 = 70/13

Vậy .....

27 tháng 6 2018

2x + 4y = 28

x + y = 14

ta có \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{8}=\frac{14}{8}\)\(=\frac{7}{4}\)

=> \(x=\frac{21}{4},y=\frac{35}{4}\)

31 tháng 8 2016

Có: \(\frac{x}{3}=\frac{y}{5}\)

=> \(\frac{2x}{6}=\frac{4y}{20}=\frac{2x+4y}{6+20}=\frac{28}{26}=\frac{14}{13}\)(Tính chất dãy tỉ số bằng nhau)

<=> \(\frac{x}{3}=\frac{y}{5}=\frac{14}{13}\)

=> x = 14 . 3 : 13 = \(\frac{42}{13}\)

=> y = 14 . 5 : 13 = \(\frac{70}{13}\)

31 tháng 8 2016

\(\frac{x}{3}=\frac{y}{5}\) và \(2x+4y=28\)

Áp dụng tính chất của dảy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{2x+4y}{6+20}=\frac{28}{26}=\frac{14}{13}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{14}{13}.3\\y=\frac{14}{13}.5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{42}{13}\\y=\frac{70}{13}\end{cases}}\)

21 tháng 9 2020

\(\hept{\begin{cases}\frac{4x}{5}=\frac{3y}{2}\\\frac{4y}{5}=\frac{5z}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}=\frac{y}{\frac{2}{3}}\\\frac{y}{\frac{5}{4}}=\frac{z}{\frac{3}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}\times\frac{1}{\frac{3}{2}}=\frac{y}{\frac{2}{3}}\times\frac{1}{\frac{3}{2}}\\\frac{y}{\frac{5}{4}}\times\frac{1}{\frac{4}{5}}=\frac{z}{\frac{3}{5}}\times\frac{1}{\frac{4}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{15}{8}}=\frac{y}{1}\\\frac{y}{1}=\frac{z}{\frac{12}{25}}\end{cases}}\Rightarrow\frac{x}{\frac{15}{8}}=\frac{y}{1}=\frac{z}{\frac{12}{25}}\)

2x - 3y + 4z = 5, 34

=> \(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}\)và 2x - 3y + 4z = 5, 34

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}=\frac{2x-3y+4z}{\frac{15}{4}-3+\frac{48}{25}}=\frac{5,34}{\frac{267}{100}}=2\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot\frac{15}{8}=\frac{15}{4}\\y=2\cdot1=2\\z=2\cdot\frac{12}{25}=\frac{24}{25}\end{cases}}\)

Vậy ...

b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)và 2x + 3y - z = 50

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)

\(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)

\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)

\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)

Vậy ...

26 tháng 2 2017

a) Theo bài ra, ta có:

\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)

\(\Rightarrow\left(2x+1\right).9=\left(4y-5\right).5\)

\(\Rightarrow18x+9=20y-25\) (1)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\)

\(\Rightarrow\frac{2x+4y-4}{7x}=\frac{2x+4y-4}{14}\)

\(\Rightarrow7x=14\)

\(\Rightarrow x=14:7\)

\(\Rightarrow x=2\) (2)

Thay (2) vào (1) ta có:

\(18x+9=20y-25\)

\(hay:18.2+9=20y-25\)

\(\Rightarrow20y-25=36+9\)

\(\Rightarrow20y-25=45\)

\(\Rightarrow20y=45+25\)

\(\Rightarrow20y=70\)

\(\Rightarrow y=\frac{7}{2}\)

Vậy \(x=2;y=\frac{7}{2}\)

b) Theo bài ra, ta có:

\(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}\)

\(\Rightarrow\left(x+4\right).8=\left(3y-1\right).6\)

\(\Rightarrow8x+32=18y-6\) (1)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x+4}{6}=\frac{3y-1}{8}=\frac{3y-x-5}{x}=\frac{3y-1-x+4}{8-6}=\frac{3y-x-5}{2}\)

\(\Rightarrow\frac{3y-x-5}{x}=\frac{3y-x-5}{2}\)

\(\Rightarrow x=2\) (2)

Thay (2) vào (1) ta có:

\(8x+32=18y-6\)

\(hay:8.2+32=18y-6\)

\(\Rightarrow18y-6=16+32\)

\(\Rightarrow18y-6=48\)

\(\Rightarrow18y=48+6\)

\(\Rightarrow18y=54\)

\(\Rightarrow y=3\)

Vậy \(x=2;y=3\)

26 tháng 2 2017

Giải:

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\) \(=\frac{2x+1+4y-5}{5+9}=\frac{2x+4y-4}{14}\)

Do \(\frac{2x+4y-4}{7x}=\frac{2x+4y-4}{14}\)

\(\Rightarrow\left(2x+4y-4\right)14=\left(2x+4y-4\right)7x\)

\(\Rightarrow7x=14\)

\(\Rightarrow x=2\)

Khi đó \(\frac{2.2+1}{5}=\frac{4y-5}{9}\)

\(\Rightarrow\frac{4y-5}{9}=1\)

\(\Rightarrow4y-5=9\)

\(\Rightarrow4y=14\Rightarrow y=3,5\)

Vậy \(\left[\begin{matrix}x=2\\y=3,5\end{matrix}\right.\).

Đặt 

\(3x=4y=k\Rightarrow\frac{x}{4}=\frac{y}{3}=k\Rightarrow x=4k;y=3k.\)

Thay vào biểu thức ta có :

x2 + y2 = 25

=> ( 4k )2 + ( 3k )2 = 25

=> 16k2 + 9k2 = 25 

=> k2 .( 16 + 9 ) = 25

=> k2 . 25 = 25

=> k= 1 

=> k = 1 

\(\Rightarrow\frac{x}{4}=1\Rightarrow x=4\)

\(\frac{y}{3}=1\Rightarrow y=3\)

Vậy x = 4 ; y = 3 

các phần khác làm tương tự nha 

14 tháng 9 2019

Tìm x;y;z biết : 

a) Giải

Từ \(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)

Đặt \(\frac{x}{4}=\frac{y}{3}=k\)

\(\Rightarrow x=4k;y=3k\left(1\right)\)

Lại có : \(x^2+y^2=25\left(2\right)\)

Thay (1) vào (2) ta có : 

\(\left(4k\right)^2+\left(3k\right)^2=25\)

\(\Rightarrow k^2.4^2+k^2.3^2=25\)

\(\Rightarrow k^2.16+k^2.9=25\)

\(\Rightarrow k^2.\left(16+9\right)=25\)

\(\Rightarrow k^2.25=25\)

\(\Rightarrow k^2=1^2\)

\(\Rightarrow k=\pm1\)

Nếu k = 1

=> x = 3.1 = 3 ;

     y = 4.1 = 4

Vậy x = 3 ; y = 4

30 tháng 9 2019

a)\(2x=3y,4y=5z\Leftrightarrow\frac{x}{3}=\frac{y}{2},\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{x}{15}=\frac{y}{10},\frac{y}{10}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\Leftrightarrow\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}\)

ADTCDTS=NHAU TA CÓ

\(\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}=\frac{2x+y-2z}{30+10-16}=\frac{24}{24}=1\)

x=15

y=10

z=8

b) Ta có BCNN(2,3,4)=12

\(\Rightarrow\frac{2x}{12}=\frac{3x}{12}=\frac{4z}{12}\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\Leftrightarrow\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}\)

ADTCDTS=NHAU TA CÓ

\(\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{36+16+9}=\frac{61}{61}=1\)

\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow x=+_-6\)

\(\frac{y^2}{16}=1\Rightarrow x=+_-4\)

\(\frac{z^2}{9}=1\Rightarrow z=+_-3\)

TUỰ KẾT LUẬN NHA BẠN

C)\(\frac{x-6}{3}=\frac{y-8}{4}=\frac{z-10}{5}\Leftrightarrow\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}\)

ADTCDTS=NHAU TA CÓ

\(\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}=\frac{\left(x^2-36\right)+\left(y^2-64\right)+\left(z^2-100\right)}{9+16+25}\)

\(=\frac{x^2-36+y^2-64+z^2-100}{50}=\frac{\left(x^2+y^2+z^2\right)-\left(36-64-100\right)}{50}\)

\(=\frac{\left(x^2+y^2+z^2\right)-\left(36+64+100\right)}{50}=\frac{200-200}{50}=\frac{0}{50}=0\)

\(\Rightarrow\frac{x^2-36}{9}=0\Rightarrow x^2-36=0\Rightarrow x^2=36\Rightarrow x=+_-6\)

\(\frac{y^2-64}{16}=0\Rightarrow y^2-64=0\Rightarrow y^2=64\Rightarrow y==+_-8\)

\(\frac{z^2-100}{25}=0\Rightarrow z^2-100=0\Rightarrow z^2=100\Rightarrow z=+_-10\)

TỰ KẾT LUẠN NHA

9 tháng 7 2019

\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{x}{10}=2\Rightarrow x=10.2=20\)

\(\frac{y}{6}=2\Rightarrow y=2.6=12\)

\(\frac{z}{21}=2\Rightarrow z=21.2=42\)

\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)

\(\Rightarrow ab=2k.3k=6k^2=54\)

\(\Rightarrow k^2=9\Leftrightarrow k=3\)

\(\frac{x}{2}=3\Rightarrow x=6\)

\(\frac{y}{3}=3\Rightarrow y=9\)

9 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)   =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x = 20; y = 12; z = 42

b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)

          \(\frac{y}{5}=\frac{z}{7}\)  => \(\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)

=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\)  =>  \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)

Vậy ...

31 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{7}\)=> \(\frac{x}{-6}=\frac{y}{14}\)(1)

\(\frac{y}{-2}=\frac{z}{5}\)=> \(\frac{y}{14}=\frac{z}{-35}\)(2)

Từ (1), (2) => \(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}\)và -2x - 4y + 5z = 146

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}=\frac{-2x-4y+5z}{-2.\left(-6\right)-4.14+5\left(-35\right)}=\frac{146}{-219}=-\frac{2}{3}\)

=> x = \(-\frac{2}{3}.\left(-6\right)\)= 4

     y = \(-\frac{2}{3}.14\)\(-\frac{28}{3}\)

     z = \(-\frac{2}{3}.\left(-35\right)\)\(\frac{70}{3}\)

=>x/6=y/-14

y/-14=z/35

=>x/6=y/-14=z/35

=>-2x/-12=4y/-56=5z/175

=>-2x-4y+5z/-12+56+175=146/219=2/3

=>x=4,y=-28/3,z=70/3