K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em tách ra đăng từng bài một nha

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:

a. TXĐ: $\mathbb{R}$

Với $x\in\mathbb{R}$ thì $-x\in\mathbb{R}$

$f(x)=|x|=|-x|=f(-x)$

$\Rightarrow $ hàm chẵn

b. TXĐ: $\mathbb{R}$

Với $1\in\mathbb{R}$ thì $-1\in\mathbb{R}$

$f(1)=9; -f(1)=-9; f(-1)=1$

$\Rightarrow f(1)\neq f(-1); -f(1)\neq f(-1)$ nên hàm không chẵn không lẻ.

c.

TXĐ: $\mathbb{R}$

Với $x\in\mathbb{R}$ thì $-x\in\mathbb{R}$

$f(-x)=(-x)^3+(-x)=-(x^3+x)=-f(x)$ nên hàm lẻ

d.

TXĐ: $\mathbb{R}$

Với $1\in\mathbb{R}$ thì $-1\in\mathbb{R}$

$f(1)=3; f(-1)=1$

$\Rightarrow f(1)\neq f(-1); -f(1)\neq f(-1)$

Do đó hàm không chẵn không lẻ.

4 tháng 4 2023

a) \(\left(2x-1\right)\left(x^2-x+1\right)+x^2\left(3-2x\right)=2\)

\(\Rightarrow2x^3-2x^2+2x-x^2+x-1+3x^2-2x^3=2\)

\(\Rightarrow\left(2x^3-2x^3\right)-\left(2x^2+x^2-3x^2\right)+\left(2x+x\right)-1=2\)

\(\Rightarrow3x-1=2\)

\(\Rightarrow3x=2-1\)

\(\Rightarrow3x=1\)

\(\Rightarrow x=\dfrac{1}{3}\)

 

a. bằng 1/3 nha

NV
23 tháng 12 2022

19

Từ pt đầu ta có:

\(x^2-xy-2xy+2y^2=0\)

\(\Leftrightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x=2y\end{matrix}\right.\)

TH1: \(x=y\) thế xuống pt dưới:

\(y^2-y-y^2=1\Rightarrow y=-1\Rightarrow x=-1\)

TH2: \(x=2y\) thế xuống pt dưới:

\(\left(2y\right)^2-2y-y^2=1\Leftrightarrow3y^2-2y-1=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=2\\y=-\dfrac{1}{3}\Rightarrow x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy nghiệm của hệ là: \(\left(x;y\right)=\left(-1;-1\right);\left(1;2\right);\left(-\dfrac{1}{3};-\dfrac{2}{3}\right)\)

NV
23 tháng 12 2022

21.

Từ pt đầu:

\(xy+2=2x+y\Leftrightarrow xy-y+2-2x=0\)

\(\Leftrightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

TH1: \(x=1\) thế xuống pt dưới:

\(2y+y^2+3y=6\Leftrightarrow y^2+5y-6=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1\\y=-6\end{matrix}\right.\)

TH2: \(y=2\) thế xuông pt dưới

\(4x+4+6=6\Rightarrow x=-1\)

Vậy nghiệm của pt là: \(\left(x;y\right)=\left(1;1\right);\left(1;-6\right);\left(-1;2\right)\)

a: Ta có: \(\left(\dfrac{3}{5}-\dfrac{7}{4}\right):\dfrac{23}{10}\)

\(=\dfrac{12-35}{20}\cdot\dfrac{10}{23}\)

\(=\dfrac{-23\cdot10}{23\cdot20}=-\dfrac{1}{2}\)

b: Ta có: \(\left(-\dfrac{2}{3}+\dfrac{3}{4}\right)^2\cdot\dfrac{12}{5}-\dfrac{11}{5}\)

\(=\dfrac{1}{144}\cdot\dfrac{12}{5}-\dfrac{11}{5}\)

\(=\dfrac{1}{60}-\dfrac{11}{5}=\dfrac{1}{60}-\dfrac{132}{60}=\dfrac{-131}{60}\)