Chứng minh AC→ = BD→ khi và chỉ khi trung điểm của 2 đoạn thẳng AD và BC trùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi trung điểm của AD là I, trung điểm BC là J.
Khi đó ta có:
Mà theo quy tắc ba điểm ta có:
⇔ I ≡ J hay trung điểm AD và BC trùng nhau (đpcm)
Với 4 điểm A, B, C, D ta có: \(\overrightarrow {AB} = \overrightarrow {CD} \) khi và chỉ khi tứ giác ABDC là hình bình hành
Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.
Nói cách khác: trung điểm của hai đoạn thẳng AD và BC trùng nhau.
Vậy ta có điều phải chứng minh.
Với 4 điểm A, B, C, D ta có: \(\overrightarrow {AB} = \overrightarrow {CD} \) khi và chỉ khi tứ giác ABDC là hình bình hành
Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.
Nói cách khác: trung điểm của hai đoạn thẳng AD và BC trùng nhau.
Vậy ta có điều phải chứng minh.
Nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì AD và BC có trung điểm trùng nhau. Gọi I là trung điểm của AD ta chứng minh I cũng là trung điểm của BC.
Theo quy tắc của ba điểm của tổng, ta có
\(\overrightarrow{AB}=\overrightarrow{AI}+\overrightarrow{IB};\overrightarrow{CD}=\overrightarrow{CI}+\overrightarrow{ID}\)
Vì \(\overrightarrow{AB}=\overrightarrow{CD}\) nên \(\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\)
\(\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)
\(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{CI}+\overrightarrow{BI}\left(1\right)\)
Vì I là trung điểm của AD nên \(\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\left(2\right)\)
Từ (1) và (2) suy ra \(\overrightarrow{CI}+\overrightarrow{BI}=\overrightarrow{0}\left(3\right)\)
Từ (3) ta có chung điểm I, ta chứng minh \(\overrightarrow{AB}=\overrightarrow{CD}\)
I là trung điểm AD \(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{0}\)
I là trung điểm BC \(\Rightarrow\overrightarrow{CI}+\overrightarrow{BI}=0\Rightarrow\overrightarrow{CI}-\overrightarrow{IB}=\overrightarrow{0}\)
Suy ra \(\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)
\(\Rightarrow\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\Rightarrow\overrightarrow{AB}=\overrightarrow{CD}\)
mình ko biết cách c/m thẳng hàng ở câu c thôi ai giúp với
Ta có hình vẽ:
O A B C D M N
a/ Xét tam giác OAC và tam giác OBD có:
OA = OB (GT)
góc AOC = góc BOD (đối đỉnh)
OC = OD (GT)
=> tam giác OAC = tam giác OBD (c.g.c)
=> AC = BD (2 cạnh tương ứng)
Ta có: tam giác OAC = tam giác OBD (đã chứng minh trên)
=> góc CAO = góc OBD (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AC // BD (đpcm)
b/ Xét tam giác OAD và tam giác OBC có:
OA = OB (GT)
góc AOD = góc BOC (đối đỉnh)
OC = OD (GT)
=> tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)
Ta có: tam giác OAD = tam giác OBC (đã chứng minh trên)
=> góc DAO = góc CBO (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AD // BC 9đpcm)
c/ Ta có: COM = DON (đối đỉnh)
Ta có: góc AOD + góc AOM + góc COM = 1800
=> góc AOD + góc AOM + góc DON = 1800
hay góc MON = 1800
hay M,O,N thẳng hàng
A B C D O M N a) Xét ΔCAO và ΔDBO có:
OA=OB (gt)
\(\widehat{COA}=\widehat{DOB}\) (đối đỉnh)
OC=OD (gt)
=> ΔCAO=ΔDBO (c.g.c)
=> AC=BD (hai cạnh tương ứng)
Vì ΔCAO=ΔDBO
=> \(\widehat{OAC}=\widehat{OBD}\) mà hai góc ở vị trí so le trong nên
=> AC//BD. (đpcm)
b) Xét ΔAOD và ΔBOC có:
OA=OB (gt)
\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)
OD=OC (gt)
=> ΔAOD=ΔBOC (c.g.c)
=> AD=BC (hai cạnh tương ứng)
Vì ΔAOD=ΔBOC
=> \(\widehat{OAD}=\widehat{OBC}\) mà hai góc ở vị trí so le trong nên
=> AD//BC (đpcm)
c) Ta có: \(\widehat{AOM}=\widehat{NOB}\) (đối đỉnh)
Mà ta có: \(\widehat{AOM}+\widehat{MOC}+\widehat{COB}=180^o\)
=> \(\widehat{MOC}+\widehat{COB}+\widehat{BON}=\widehat{MON}=180^o\)
Vậy ba điểm M,O,N thẳng hàng
Bài 1 :
a) M là trung điểm của đoạn thẳng AB
\(\Rightarrow MA=MB=\frac{1}{2}AB\). Thật vậy : Do M là trung điểm của AB nên theo đĩnh nghĩa ta có
:\(MA+MB=AB\)VÀ \(MA=MB\)
\(\Rightarrow2MA=2MB=AB\)
\(\Rightarrow MA=MB\frac{1}{2}AB\)
b) Nếu \(MA=MB=\frac{1}{2}AB\Rightarrow\)M là trung điểm của đoạn thằng AB
Từ \(MA=MB=\frac{1}{2}AB\Rightarrow MA+MB=\frac{1}{2}AB+\frac{1}{2}AB=AB\)
Vậy \(MA+MB=AB\)VÀ \(MA=MB\)
Chứng tỏ M là trung điểm đoạn thẳng AB
Bài 2 :
Gọi O là trung điểm chung của AB VÀ CD. Ta có:
Gỉa sử :A và C cùng phía đối với O
Ta thấy rằng
\(\hept{\begin{cases}AC=OC-OA\\BD=OD-OB\end{cases}}\)
\(\Leftrightarrow\)\(AC=BD\)
\(\hept{\begin{cases}AD=OA+OD\\BC=OB+OC\end{cases}}\)
\(\Leftrightarrow AD=BC\)
Trường hợp A,C khác phía đối với O chứng minh tương tự
Mk k vẽ được hình xin lỗi bạn nhiều nha!
Chúc bạn học tốt ( -_- )
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AC=BD
A D C O N M B
Xét \(\Delta\)AOD & \(\Delta\)COB có:
OA=OC(vì O là trung điểm AC)
góc AOD= góc COB(2 góc đối đỉnh)
OD=OB(vì O là trung điểm BD)
=>\(\Delta\)AOD=\(\Delta\)COB(c.g.c)
=>AD=CB(2 cạnh tương ứng)(1)
Vì N là trung điểm của AD
=>AN=ND=AD/2(2)
Vì M là trung điểm BC
=>MB=MC=BC/2(3)
Từ (1);(2);(3)=>AN=MC
Xét \(\Delta\)NOA & \(\Delta\)MOC có:
AN=MC(theo c/m trên)
ON=OM(vì O là trung điểm MN)
OA=ỌC(vì O là trung điểm AC)
=>\(\Delta\)NOA=\(\Delta\)MOC(c.c.c)
=>góc NOA= góc MOV(2 góc tương ứng)
Ta có: góc =180 độ
=>góc NOA+ góc NOC= 180 độ(2 góc kề bù)
=>góc MOC+góc NỚC=180 độ
=>góc NOM=180 độ
=>N,O,M thẳng hàng
Xét tứ giác ABDC có
AD cắt BC tại trung điểm của mỗi đường
nên ABDC là hình bình hành
Suy ra: vecto AC=vecto BD