Biết AM//CM. CMR góc ABC = góc A + góc C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
DO đó: ΔABD\(\sim\)ΔACE
b: Ta có: ΔABD\(\sim\)ΔACE
nên AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)
c: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE\(\sim\)ΔABC
Suy ra: \(\widehat{ADE}=\widehat{ABC}\)
a, Xét tam giác ABC cân tại A, có M là trung điểm
=> AM là đường trung tuyến đồng thời là đường phân giác ^A
b, Theo định lí Pytago tam giác AMC vuông tại M
\(AC=\sqrt{AM^2+MC^2}=10cm\)
Ta có BC = 2MC = 12 cm
a: Ta có: \(\widehat{C}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{A}}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=2\cdot\widehat{C}\\\widehat{A}=3\cdot\widehat{C}\end{matrix}\right.\)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow6\cdot\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{C}=30^0\)
Suy ra: \(\widehat{A}=90^0\)
Xét ΔABC có \(\widehat{A}=90^0\)
nên ΔABC vuông tại A
b: Ta có: \(\widehat{B}+\widehat{C}=90^0\)
\(\widehat{HAC}+\widehat{C}=90^0\)
Do đó: \(\widehat{B}=\widehat{HAC}\)
Ta có: \(\widehat{B}+\widehat{C}=90^0\)
\(\widehat{BAH}+\widehat{B}=90^0\)
Do đó: \(\widehat{C}=\widehat{BAH}\)
Xét tam giác AMB và tam giác AMC có:
AB=AC(giả thiết)
AM chung
MB=MC(M là trung điểm BC)
Từ 3 điều trên, ta có tam giác AMB=tam giác AMC=>góc B=góc C
b/ Ta có tam giác AMB=tam giác AMC=>góc BAM=góc CAM=>AM là tia phân giác của góc BAC
c/ Ta có tam giác AMB=tam giác AMC=>góc AMB=góc AMC mà tổng 2 góc này bằng 180 độ=>góc AMB=góc AMC=>AM vuông góc với BC
Ta có hình vẽ:
a/ Xét tam giác AIB và tam giác MIB có:
AB = MB (GT)
BI : cạnh chung
AI = IM (GT)
=> tam giác AIB = tam giác MIB (c.c.c)
b/ Ta có: tam giác AIB = tam giác MIB (câu a)
=> \(\widehat{BIA}\)=\(\widehat{BIM}\) (2 góc tương ứng)
Mà \(\widehat{BIA}\)+\(\widehat{BIM}\) = 1800 (kề bù)
=> \(\widehat{BIA}\)=\(\widehat{BIM}\)=900
=> BN\(\perp\)AM (đpcm)
c/ Trong tam giác ABC có:
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=1800
hay 900 + \(\widehat{B}\) + 300 = 1800
=> \(\widehat{B}\)=600
Vì tam giác AIB = tam giác MIB (đã chứng minh trên câu a)
=> \(\widehat{ABI}\)=\(\widehat{MBI}\) (2 góc tương ứng)
Ta có: \(\widehat{ABI}\)=\(\widehat{MBI}\)=\(\frac{1}{2}\)\(\widehat{ABM}\)=\(\frac{1}{2}\)600 = 300
Trong tam giác BNC có:
\(\widehat{NBC}\)+\(\widehat{BCN}\)+\(\widehat{BNC}\) =1800
hay 300 + 300 + \(\widehat{BNC}\)=1800
=> \(\widehat{BNC}\) = 1200
Vậy \(\widehat{BNC}\)=1200 hay \(\widehat{INC}\)=1200
Câu hỏi của nguyen phuong mai - Toán lớp 7 - Học toán với OnlineMath'
Bạn tham khảo link trên nhé!