K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2018

Lời giải:

a) \(x=\frac{23(5-\sqrt{2})}{5+\sqrt{2}}=\frac{23(5-\sqrt{2})^2}{(5+\sqrt{2})(5-\sqrt{2})}=\frac{23(5-\sqrt{2})^2}{5^2-2}=(5-\sqrt{2})^2\)

\(\Rightarrow x=5-\sqrt{2}\)

Do đó: \(B=\frac{5-\sqrt{2}+2}{5-\sqrt{2}-5}=\frac{7-\sqrt{2}}{-\sqrt{2}}=\frac{\sqrt{2}-7}{\sqrt{2}}\)

b)

\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}=\frac{x+3\sqrt{x}}{(\sqrt{x}-5)(\sqrt{x}+5)}+\frac{\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}\)

\(=\frac{x+4\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}=\frac{(\sqrt{x}-1)(\sqrt{x}+5)}{(\sqrt{x}-5)(\sqrt{x}+5)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)

Ta có: \(\frac{A}{B}=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{4}{7}\)

\(\Rightarrow 7(\sqrt{x}-1)=4(\sqrt{x}+2)\)

\(\Rightarrow \sqrt{x}=5\Rightarrow x=25\)

c)

\(\frac{A}{B}=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)

\(\sqrt{x}\geq 0\Rightarrow \sqrt{x}+2\geq 2\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}\)

\(\Rightarrow \frac{A}{B}=1-\frac{3}{\sqrt{x}+2}\geq 1-\frac{3}{2}=\frac{-1}{2}\)

Vậy \(P_{\min}=\frac{-1}{2}\Leftrightarrow x=0\)

NV
23 tháng 8 2021

\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)

\(=\left|\sqrt{3}-1\right|\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)

\(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}-5}-\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}\)

\(=\sqrt{x}+5-\left(\sqrt{x}+2\right)=5-2=3\)

a: Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

=3-1

=2

b: Ta có: \(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\sqrt{x}+5-\sqrt{x}-2\)

=3

b: Ta có: \(B=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\left(x+\sqrt{x}+1+\sqrt{x}\right)\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

20 tháng 8 2021

 

 

a: Thay x=9 vào A, ta được:

\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)

\(B=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{\sqrt{x}+5}{x-25}=\dfrac{1}{\sqrt{x}-5}\)

b: Để \(A=B\cdot\left|x-4\right|\) thì \(\left|x-4\right|=\dfrac{A}{B}=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}:\dfrac{1}{\sqrt{x}-5}=\sqrt{x}+2\)

\(\Leftrightarrow x-4=\sqrt{x}+2\)

\(\Leftrightarrow x-\sqrt{x}-6=0\)

=>x=9

17 tháng 6 2023

bạn ơi. Cho tớ hỏi là tại sao |x-4|= A/B hả bạn ?. Giải thích cho mình với

 

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

1. Đề bài không có b. Bạn coi lại đề.

2.

\(B=\left[\frac{1}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{1}{(\sqrt{x}+2)^2}\right]-(\sqrt{x}+2)\)

\(=\frac{(\sqrt{x}-2)(\sqrt{x}+2)-(\sqrt{x}-2)^2}{(\sqrt{x}-2)^2(\sqrt{x}+2)^2}-(\sqrt{x}+2)\)

\(=\frac{4(\sqrt{x}-2)}{(\sqrt{x}-2)^2(\sqrt{x}+2)^2}-(\sqrt{x}+2)=\frac{4}{(\sqrt{x}-2)(\sqrt{x}+2)^2}-(\sqrt{x}+2)\)

\(=\frac{4}{(x-4)(\sqrt{x}+2)}-(\sqrt{x}+2)\)

14 tháng 10 2021

\(a,A=4\sqrt{3}-5\sqrt{3}+2-\sqrt{3}=2-2\sqrt{3}\\ B=\dfrac{x+2\sqrt{x}+8+2\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-4}\\ b,B-\dfrac{1}{2}A=\dfrac{\sqrt{x}}{\sqrt{x}-4}-\dfrac{1}{2}\left(2-2\sqrt{3}\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-4}=1+\sqrt{3}\\ \Leftrightarrow\sqrt{x}=\left(1+\sqrt{3}\right)\left(\sqrt{x}-4\right)\Leftrightarrow\sqrt{x}=\sqrt{x}-4\sqrt{3}+\sqrt{3x}-4\\ \Leftrightarrow\sqrt{3x}=4\sqrt{3}+4\\ \Leftrightarrow\sqrt{x}=\dfrac{4\sqrt{3}+4}{\sqrt{3}}\\ \Leftrightarrow\sqrt{x}=\dfrac{12+4\sqrt{3}}{3}\\ \Leftrightarrow x=\dfrac{192+96\sqrt{3}}{9}=\dfrac{64+32\sqrt{3}}{3}\)

14 tháng 10 2021

\(\dfrac{\sqrt{x}}{\sqrt{x}-4}=1-\sqrt{3}\)
Nhỉ???

13 tháng 5 2021

`A=1/3`
`<=>3\sqrtx-3=\sqrtx`
`<=>2\sqrtx=3`
`<=>x=9/4`

17 tháng 5 2021

`A)đk:x>=0,x ne 25`

`A=9=>A=(3+2)/(3-5)=-5/2`

`B)B=(3sqrtx-15+20-2sqrtx)/(x-25)`

`=(sqrtx+5)/(x-25)`

`=1/(sqrtx-5)`

`A=B.|x-4|`

`<=>A/B=|x-4|`

`<=>\sqrtx+2=|x-4|`

`<=>\sqrtx+2=(sqrtx+2)|sqrtx-2|`

`<=>|sqrtx-2|=1`

`+)sqrtx-2=1<=>x=9(tm)`

`+)sqrtx-2=-1<=>x=1(tm)`

Vậy `S={1,9}`

17 tháng 5 2021

a, Thay x=9 vào biểu thức A ta có

\(A=\dfrac{\sqrt{9}+2}{\sqrt{9}-5}\)

\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=-2,5\)

Vậy A =-2,5 khi x=9

7 tháng 11 2021

\(a,A=\dfrac{2\cdot2-4}{2-1}=0\\ b,B=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ B=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ c,AB=\dfrac{2\sqrt{x}-4}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{2\sqrt{x}-4}{\sqrt{x}+1}=\dfrac{5\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+3\right)}{\sqrt{x}+1}\\ AB=5-\dfrac{3\left(\sqrt{x}+3\right)}{\sqrt{x}+1}\)

Vì \(\dfrac{3\left(\sqrt{x}+3\right)}{\sqrt{x}+1}>0\) nên \(AB< 5\)

7 tháng 11 2021

a. \(x=4\Rightarrow A=\dfrac{2.\sqrt{4}-4}{\sqrt{4}-1}=0\)

b. \(\Rightarrow B=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-\left(6\sqrt{x}-4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow B=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow B=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow B=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

 

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)