K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2018

Lời giải:

a) \(x=\frac{23(5-\sqrt{2})}{5+\sqrt{2}}=\frac{23(5-\sqrt{2})^2}{(5+\sqrt{2})(5-\sqrt{2})}=\frac{23(5-\sqrt{2})^2}{5^2-2}=(5-\sqrt{2})^2\)

\(\Rightarrow x=5-\sqrt{2}\)

Do đó: \(B=\frac{5-\sqrt{2}+2}{5-\sqrt{2}-5}=\frac{7-\sqrt{2}}{-\sqrt{2}}=\frac{\sqrt{2}-7}{\sqrt{2}}\)

b)

\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}=\frac{x+3\sqrt{x}}{(\sqrt{x}-5)(\sqrt{x}+5)}+\frac{\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}\)

\(=\frac{x+4\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}=\frac{(\sqrt{x}-1)(\sqrt{x}+5)}{(\sqrt{x}-5)(\sqrt{x}+5)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)

Ta có: \(\frac{A}{B}=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{4}{7}\)

\(\Rightarrow 7(\sqrt{x}-1)=4(\sqrt{x}+2)\)

\(\Rightarrow \sqrt{x}=5\Rightarrow x=25\)

c)

\(\frac{A}{B}=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)

\(\sqrt{x}\geq 0\Rightarrow \sqrt{x}+2\geq 2\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}\)

\(\Rightarrow \frac{A}{B}=1-\frac{3}{\sqrt{x}+2}\geq 1-\frac{3}{2}=\frac{-1}{2}\)

Vậy \(P_{\min}=\frac{-1}{2}\Leftrightarrow x=0\)

14 tháng 10 2021

\(a,A=4\sqrt{3}-5\sqrt{3}+2-\sqrt{3}=2-2\sqrt{3}\\ B=\dfrac{x+2\sqrt{x}+8+2\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-4}\\ b,B-\dfrac{1}{2}A=\dfrac{\sqrt{x}}{\sqrt{x}-4}-\dfrac{1}{2}\left(2-2\sqrt{3}\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-4}=1+\sqrt{3}\\ \Leftrightarrow\sqrt{x}=\left(1+\sqrt{3}\right)\left(\sqrt{x}-4\right)\Leftrightarrow\sqrt{x}=\sqrt{x}-4\sqrt{3}+\sqrt{3x}-4\\ \Leftrightarrow\sqrt{3x}=4\sqrt{3}+4\\ \Leftrightarrow\sqrt{x}=\dfrac{4\sqrt{3}+4}{\sqrt{3}}\\ \Leftrightarrow\sqrt{x}=\dfrac{12+4\sqrt{3}}{3}\\ \Leftrightarrow x=\dfrac{192+96\sqrt{3}}{9}=\dfrac{64+32\sqrt{3}}{3}\)

14 tháng 10 2021

\(\dfrac{\sqrt{x}}{\sqrt{x}-4}=1-\sqrt{3}\)
Nhỉ???

17 tháng 5 2021

`A)đk:x>=0,x ne 25`

`A=9=>A=(3+2)/(3-5)=-5/2`

`B)B=(3sqrtx-15+20-2sqrtx)/(x-25)`

`=(sqrtx+5)/(x-25)`

`=1/(sqrtx-5)`

`A=B.|x-4|`

`<=>A/B=|x-4|`

`<=>\sqrtx+2=|x-4|`

`<=>\sqrtx+2=(sqrtx+2)|sqrtx-2|`

`<=>|sqrtx-2|=1`

`+)sqrtx-2=1<=>x=9(tm)`

`+)sqrtx-2=-1<=>x=1(tm)`

Vậy `S={1,9}`

17 tháng 5 2021

a, Thay x=9 vào biểu thức A ta có

\(A=\dfrac{\sqrt{9}+2}{\sqrt{9}-5}\)

\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=-2,5\)

Vậy A =-2,5 khi x=9

18 tháng 10 2021

a. B = \(\dfrac{\sqrt{36}}{\sqrt{36}-3}=\dfrac{6}{6-3}=2\)

 

18 tháng 10 2021

a: Thay x=36 vào B, ta được:

\(B=\dfrac{6}{6-3}=\dfrac{6}{3}=2\)

a: Thay x=9 vào A, ta được:

\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)

\(B=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{\sqrt{x}+5}{x-25}=\dfrac{1}{\sqrt{x}-5}\)

b: Để \(A=B\cdot\left|x-4\right|\) thì \(\left|x-4\right|=\dfrac{A}{B}=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}:\dfrac{1}{\sqrt{x}-5}=\sqrt{x}+2\)

\(\Leftrightarrow x-4=\sqrt{x}+2\)

\(\Leftrightarrow x-\sqrt{x}-6=0\)

=>x=9

17 tháng 6 2023

bạn ơi. Cho tớ hỏi là tại sao |x-4|= A/B hả bạn ?. Giải thích cho mình với

 

7 tháng 12 2021

\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)

8 tháng 12 2021

\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế

 

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1; x\neq 25$

a) 

\(A=\frac{4\sqrt{x}}{\sqrt{x}-5}:\left[\frac{(\sqrt{x}-2)(\sqrt{x}+2)+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2}+\frac{5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\right]\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4(\sqrt{x}+2)}{\sqrt{x}-5}\)

b) Tại $x=81$ thì $\sqrt{x}=9$.

Khi đó: $A=\frac{4(9+2)}{9-5}=11$

c) $A< 4\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}-5}< 1$

$\Leftrightarrow \frac{7}{\sqrt{x}-5}< 0\Leftrightarrow \sqrt{x}-5< 0$

$\Leftrightarrow 0\leq x< 25$. Kết hợp với ĐKXĐ suy ra: $0\leq x< 25; x\neq 1$

1 tháng 4 2021

Hỗ trợ em nhé cô

19 tháng 11 2023

2: \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5-10}{\sqrt{x}+5}\)

\(=1-\dfrac{10}{\sqrt{x}+5}\)

\(\sqrt{x}+5>=5\forall x\)

=>\(\dfrac{10}{\sqrt{x}+5}< =\dfrac{10}{5}=2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}>=-2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}+1>=-2+1=-1\forall x\)

Dấu '=' xảy ra khi x=0

Vậy: \(A_{min}=-1\) khi x=0