K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2021

a)Từ A kẻ đường thẳng đi qua M cắt BC tại H

Ta có:\(\widehat{BAM}+\widehat{ABM}=\widehat{BHM}\) (tính chất góc ngoài của ΔABM)

Ta có:\(\widehat{MAC}+\widehat{ACM}=\widehat{CMH}\) (tính chất góc ngoài của ΔACM)

\(\Rightarrow\widehat{BAM}+\widehat{ABM}+\widehat{MAC}+\widehat{ACM}=\widehat{CMH}+\widehat{BHM}\)

\(\Leftrightarrow\widehat{BAC}+\widehat{ABM}+\widehat{ACM}=\widehat{BMC}\left(đpcm\right)\)

3 tháng 8 2021

thank

 

 

Xét tam giác ABC: \(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180\Rightarrow\widehat{BAC}=180-\widehat{BCA}-\widehat{ABC}\)

\(=180-\left(\widehat{BCM}+\widehat{ACM}\right)-\left(\widehat{ABM}+\widehat{CBM}\right)\)

\(\Leftrightarrow\widehat{BAC}+\widehat{ABM}+\widehat{ACM}=180-\widehat{BCM}-\widehat{CBM}\)

Xét tam giác BMC: \(\widehat{BMC}+\widehat{CBM}+\widehat{BCM}=180\Leftrightarrow\widehat{BMC}=180-\widehat{BCM}-\widehat{CBM}\)

Vậy \(\widehat{BMC}=\widehat{BAC}+\widehat{ABM}+\widehat{ACM}\)

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
a.

Do tam giác $ABC$ cân tại $A$ nên $AB=AC$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$

$AM$ chung

$BM=CM$ (do $M$ là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b.

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$. Mà $AM$ nằm giữa $AB, AC$ nên $AM$ là tia phân giác $\widehat{BAC}$

Cũng từ tam giác bằng nhau phần a suy ra:
$\widehat{AMB}=\widehat{AMC}$

Mà $\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0$

$\Rightarrow \widehat{AMB}=180^0:2=90^0$

$\Rightarrow AM\perp BC$

c.

$AM\perp BC, M$ là trung điểm $BC$ nên $AM$ là đường trung trực của $BC$

$\Rightarrow$ mọi điểm $E\in AM$ đều cách đều 2 đầu mút B,C (theo tính chất đường trung trực)

$\Rightarrow EB=EC$

$\Rightarrow \triangle EBC$ cân tại $E$.

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Hình vẽ:

30 tháng 6 2017


a, Xét tam giác ABC có:

BAC + (ABC + ACB)=1800

Xét tam giác MBC có:

BMC + (MCB + MBC)=1800

\(\Rightarrow\)BAC + (ABC + ACB) = BMC + (MCB + MBC) (1)

Vì M nằm trong tam giác ABC nên BM nằm giữa 2 tia BC và BA.

\(\Rightarrow\) ABC > MBC

Tương tự ta được: ACB > MCB.

\(\Rightarrow\)ABC + ACB > MBC + MCB (2)

Từ (1) và (2) suy ra: BAC < BMC.

b, Kéo dài AM, cắt BC tại E.

Xét tam giác ABM có BME là góc ngoài tại đỉnh M nên ta có:

BME = MAB + MBA. (1)

Tương tự đối với tam giác AMC có CME là góc ngoài tại đỉnh M nên ta cũng có:

CME = MAC + MCA. (2)

Từ (1) và (2) suy ra:

BME+CME = MAB + MBA + MAC + MCA.

\(\Rightarrow\)BMC = BAC + ABM + ACM

Sorry bn, mk ko gõ đc dấu mũ nha

22 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM