Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Từ A kẻ đường thẳng đi qua M cắt BC tại H
Ta có:\(\widehat{BAM}+\widehat{ABM}=\widehat{BHM}\) (tính chất góc ngoài của ΔABM)
Ta có:\(\widehat{MAC}+\widehat{ACM}=\widehat{CMH}\) (tính chất góc ngoài của ΔACM)
\(\Rightarrow\widehat{BAM}+\widehat{ABM}+\widehat{MAC}+\widehat{ACM}=\widehat{CMH}+\widehat{BHM}\)
\(\Leftrightarrow\widehat{BAC}+\widehat{ABM}+\widehat{ACM}=\widehat{BMC}\left(đpcm\right)\)
câu a: xét \(\Delta AMB\) và \(\Delta AMC\)có :
AB=AC(gt)
MB=MC(tam giác MBC cân)
AM là cạnh chung
\(\Rightarrow\Delta AMB=\Delta AMC\)(C.C.C)
\(\Rightarrow\)\(\widehat{BAM}=\widehat{CAM}\)
Vậy AM là tia phân giác\(\widehat{BAC}\)
B)
góc ABM= góc ACM= \(\frac{180º-20º}{2}-60º=20º\)
Vậy \(\widehat{ABM}=\widehat{ACM}=\widehat{BAC}\)
a) Xét ΔABM vuông tại B và ΔACM vuông tại M có
AM chung
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACM(cạnh huyền-cạnh góc vuông)