K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2021

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)

3 tháng 6 2021

\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)

Bình phương 2 vế, ta có:

\(x+y+3+1=x+y\)

\(x+y+3+1-x-y=0\)

\(4=0\) (vô lý)

Vậy phương trình vô nghiệm

-Chúc bạn học tốt-

Bạn sai rồi nhé. Xem lại chỗ bình phương.

4 tháng 1 2022

Buồn á :((

Bài này hóng từ qua nữa :((

 

19 tháng 6 2020

và \(\sqrt{x}=\sqrt{2012}=2\sqrt{503}-\sqrt{y}\)

=> \(x=2012-4\sqrt{503y}+y\) là số nguyên dương 

=> \(\sqrt{503y}\) là số nguyên dương 

mà 503 là số nguyên tố và 0 < y < 2012

=> y = 503 

=> x = 503

Kết luận:...

Bài đc đăng vào ngày 14/8/2019 mà đến 19/6/2020 mới đc giải? 

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

PT $\Leftrightarrow \sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1$

$\Rightarrow x+y+3=(\sqrt{x}+\sqrt{y}-1)^2$

$\Leftrightarrow x+y+3=x+y+1-2(\sqrt{x}+\sqrt{y}-\sqrt{xy})$

$\Leftrightarrow 1+\sqrt{x}+\sqrt{y}-\sqrt{xy}=0(*)$

$\Rightarrow (\sqrt{x}+\sqrt{y})^2=(\sqrt{xy}-1)^2$

$\Rightarrow 4\sqrt{xy}=xy+1-x-y\in\mathbb{Z}$

Ta có nhận xét sau: Với số không âm $a$ bất kỳ thì khi $\sqrt{a}$ là số hữu tỉ thì $\sqrt{a}$ cũng là số chính phương.

Do đó: $\sqrt{xy}$ là scp

Kết hợp $(*)$ suy ra $\sqrt{x}+\sqrt{y}\in\mathbb{Z}$

$\sqrt{x}(\sqrt{x}+\sqrt{y})=x+\sqrt{xy}\in\mathbb{Z}$

$\Rightarrow \sqrt{x}=\frac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\in\mathbb{Q}$

$\Rightarrow \sqrt{x}$ là scp. Kéo theo $\sqrt{y}$ là scp.

Từ $(*)$ ta cũng có $(\sqrt{x}-1)(1-\sqrt{y})=-2$

Đến đây thì với $\sqrt{x}, \sqrt{y}\in\mathbb{Z}$ ta có pt tích khá đơn giản.

 

15 tháng 6 2019

\(VD1\)

Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)

\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)

\(\Rightarrow\sqrt{x}\le4,5\)

\(\Rightarrow x\le4,5^2\)

\(\Rightarrow x\le20,25\)

\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)

TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)

TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)

Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)

Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)

Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)

Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )

KL....
 

15 tháng 6 2019

VD2: Ta có:

x+y+z=xyz ( 1 )

Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:

\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Giả sử \(x\ge y\ge z\ge1\)thì ta có:

\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)

Thay z=1 vào ( 1 ) ta đc:

x+y+1=xy

\(\Leftrightarrow\)xy -x - y = 1

\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2

\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2

Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3

10 tháng 1 2018

\(\sqrt{x+3\sqrt{3}}=\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow3\sqrt{3}-2\sqrt{yz}=y+z-x\)

Ta có VP là số nguyên nên VT cũng phải là số nguyên

Giả sử \(yz=a^2\) thì VT không phải số nguyên

Nên yz không phải số chính phương.

Nên để VT là số nguyên thì chỉ có thể là O

\(\Rightarrow3\sqrt{3}=2\sqrt{yz}\)

\(\Rightarrow yz=\frac{27}{4}\) loại vì yz là số nguyên dương

Vậy PT vô nghiệm