Giúp tớ làm bài này:
Tìm thương A chia B biết :
A =\(\frac{9}{1}\)+\(\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\)
B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
A : B = 10
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{2}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+\frac{10}{4}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{2}{8}+\frac{1}{9}\)
Tách 9=1+1+...+1 ( có 9 số 1)
\(\Rightarrow A=1+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{2}{8}+1\right)+\left(\frac{1}{9}+1\right)\)
\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{8}+\frac{10}{9}\)
\(A=10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(\Rightarrow A:B=\frac{10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\) ( vì \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\ne0\) )
Vậy \(A:B=10\)
a) \(\frac{1}{3}-\left(\frac{1}{2}+\frac{1}{8}\right)\)
= \(\frac{1}{3}-\left(\frac{4}{8}+\frac{1}{8}\right)\)
= \(\frac{1}{3}-\frac{5}{8}\)
= \(\frac{8}{24}-\frac{15}{24}\)
= \(\frac{-7}{24}\)
b) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{13}+\frac{1}{8}\)
= \(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\right)\)+ \(\frac{1}{13}\)
= \(\left(\frac{4}{8}-\frac{2}{8}+\frac{1}{8}\right)+\frac{1}{13}\)
= \(\frac{1}{8}+\frac{1}{13}\)
= \(\frac{13}{104}+\frac{8}{104}\)
= \(\frac{23}{104}\)
c) \(13\frac{2}{7}:\left(\frac{-8}{9}\right)+2\frac{5}{7}:\left(\frac{-8}{9}\right)\)
= \(\left(13\frac{2}{7}+2\frac{5}{7}\right):\left(\frac{-8}{9}\right)\)
= \(16:\left(\frac{-8}{9}\right)\)
= -18
Giải:
a) \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\)
\(\Rightarrow7< \dfrac{x^2}{4}< 10\)
\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6\)
b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2), ta có:
\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)
Bạn có thể viết thay dòng "Từ (1) và (2)" thành "Từ các điều kiện trên" bạn nhé !(bạn ko cần phải sửa, đây chỉ là gợi ý)
\(bai1:a,\frac{3}{7}\cdot\frac{-5}{9}+\frac{4}{9}\cdot\frac{3}{7}-\frac{3}{7}\cdot\frac{8}{9}\)
\(< =>\frac{-15}{63}+\frac{12}{63}-\frac{24}{63}\)
\(< =>\frac{-15+12-24}{63}\)
\(< =>\frac{-3}{7}\)
\(b,1\frac{13}{15}\cdot0,75-\left(\frac{11}{20}+25\%\right):\frac{7}{5}\)
\(< =>\frac{28}{15}\cdot\frac{3}{4}-\left(\frac{11}{20}+\frac{1}{4}\right):\frac{7}{5}\)
\(< =>\frac{7}{5}-\frac{4}{5}:\frac{7}{5}\)
\(< =>\frac{7}{5}-\frac{4}{7}\)
\(< =>\frac{29}{35}\)
\(bai2:\)
\(a,\frac{-3}{4}\cdot x-\frac{4}{10}=\frac{1}{5}\)
\(< =>\frac{-3}{4}\cdot x=\frac{1}{5}+\frac{4}{10}\)
\(< =>\frac{-3}{4}\cdot x=\frac{3}{5}\)
\(< =>x=\frac{3}{5}:\frac{-3}{4}\)
\(< =>x=\frac{-4}{5}\)
\(b,3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{19}:\frac{12}{19}\)
\(< =>3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{12}\)
\(< =>\left[3\left(x-\frac{1}{3}\right)\right]=\frac{1}{12}< =>x-\frac{1}{3}=\frac{1}{12}:3=\frac{1}{36}=>x=\frac{1}{36}+\frac{1}{3}=>x=\frac{13}{36}\)
\(< =>\left[\frac{1}{3}\cdot x\right]=\frac{1}{12}< =>x=\frac{1}{12}:\frac{1}{3}=>x=\frac{1}{4}\)
Bài 1:
a)\(\frac{3}{7}.\frac{-5}{9}+\frac{4}{9}.\frac{3}{7}-\frac{3}{7}.\frac{8}{9}\) b,\(1\frac{13}{15}.0,75-\left(\frac{11}{20}+25\%\right):\frac{7}{5}\)
\(=\frac{3}{7}.(\frac{-5}{9}+\frac{4}{9}-\frac{8}{9})\) \(=\frac{28}{15}.\frac{3}{4}-\left(\frac{11}{20}+\frac{5}{20}\right):\frac{7}{5}\)
\(=\frac{3}{7}.\frac{-9}{9}\) \(=\frac{7}{5}-\frac{4}{5}:\frac{7}{5}\)
\(=\frac{-3}{7}\) \(=\frac{7}{5}-\frac{4}{7}\)
\(=\frac{29}{35}\)
Bài 2:
a)\(\frac{-3}{4}x-\frac{4}{10}=\frac{1}{5}\) b,\(3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{19}:\frac{12}{19}\)
\(\frac{-3}{4}x\) \(=\frac{1}{5}+\frac{4}{10}\) \(3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{12}\)
\(\frac{-3}{4}x\) \(=\frac{3}{5}\) \(\left(x.3-\frac{1}{3}.3\right)+\frac{1}{3}x=\frac{1}{12}\)
\(x\) \(=\frac{3}{5}:\frac{-3}{4}\) \(\left(x.3-1\right)+\frac{1}{3}x=\frac{1}{12}\)
\(x\) \(=\frac{4}{-5}\) \(x.\left(3+\frac{1}{3}\right)-1=\frac{1}{12}\)
\(x.\left(3+\frac{1}{3}\right)=\frac{1}{12}+1\)
\(x.\frac{10}{3}=\frac{13}{12}\)
\(x=\frac{13}{12}:\frac{10}{3}\)
\(x=\frac{13}{40}\)
thương A chia B là \(\frac{A}{B}\)
ta có :
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(\frac{A}{B}\)= 10