Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
A : B = 10
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{2}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+\frac{10}{4}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{2}{8}+\frac{1}{9}\)
Tách 9=1+1+...+1 ( có 9 số 1)
\(\Rightarrow A=1+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{2}{8}+1\right)+\left(\frac{1}{9}+1\right)\)
\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{8}+\frac{10}{9}\)
\(A=10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(\Rightarrow A:B=\frac{10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\) ( vì \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\ne0\) )
Vậy \(A:B=10\)
a) \(\frac{1}{3}-\left(\frac{1}{2}+\frac{1}{8}\right)\)
= \(\frac{1}{3}-\left(\frac{4}{8}+\frac{1}{8}\right)\)
= \(\frac{1}{3}-\frac{5}{8}\)
= \(\frac{8}{24}-\frac{15}{24}\)
= \(\frac{-7}{24}\)
b) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{13}+\frac{1}{8}\)
= \(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\right)\)+ \(\frac{1}{13}\)
= \(\left(\frac{4}{8}-\frac{2}{8}+\frac{1}{8}\right)+\frac{1}{13}\)
= \(\frac{1}{8}+\frac{1}{13}\)
= \(\frac{13}{104}+\frac{8}{104}\)
= \(\frac{23}{104}\)
c) \(13\frac{2}{7}:\left(\frac{-8}{9}\right)+2\frac{5}{7}:\left(\frac{-8}{9}\right)\)
= \(\left(13\frac{2}{7}+2\frac{5}{7}\right):\left(\frac{-8}{9}\right)\)
= \(16:\left(\frac{-8}{9}\right)\)
= -18
1.a) \(\left(31\frac{6}{13}+5\frac{9}{41}\right)-36\frac{6}{13}=\left(31+\frac{6}{13}+5+\frac{9}{41}\right)-\left(36+\frac{6}{13}\right)\)
\(=\left(36+\frac{6}{13}-\frac{9}{41}\right)-\left(36+\frac{6}{13}\right)=\left(36+\frac{6}{13}\right)-\left(36+\frac{6}{13}\right)-\frac{9}{41}=-\frac{9}{41}\)
b) \(\frac{5}{3}+\left(-\frac{2}{7}\right)-\left(-1,2\right)-\left|1.4-0,2\right|\)
\(=\frac{5}{3}-\frac{2}{7}+1,2-1,2=\frac{29}{21}\)
c) \(0,25+\frac{3}{5}-\left(\frac{1}{8}-\frac{2}{5}+1\frac{1}{4}\right)+\left|\frac{3}{5}\right|\)
\(=\frac{1}{4}+\frac{3}{5}-\frac{1}{8}+\frac{2}{5}-1-\frac{1}{4}+\frac{3}{5}\)
\(=\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{3}{5}+\frac{2}{5}-1\right)+\frac{3}{5}-\frac{1}{8}=\frac{19}{40}\)
2) \(-\frac{3}{5}-x=0,75\)
=> \(-\frac{3}{5}-x=\frac{3}{4}\)
=> \(x=-\frac{3}{5}-\frac{3}{4}=\frac{-27}{20}\)
b) \(x+\frac{1}{3}=\frac{2}{5}-\left(-\frac{1}{3}\right)\)
=> \(x+\frac{1}{3}=\frac{2}{5}+\frac{1}{3}\)
=> \(x=\frac{2}{5}\)
c) |2x - 4| + 1 = 5
=> |2x - 4| = 4
<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Giúp mình với nha cả nhả :<
Cả nhà làm vài ý thui cx được ạ :<
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
thương A chia B là \(\frac{A}{B}\)
ta có :
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(\frac{A}{B}\)= 10