\(\frac{x^2-8x+28}{x^2-8x+9}=\sqrt{x^2-8x+32}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ĐKXĐ: $4x^2-4x-11\geq 0$
PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$
$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)
$\Leftrightarrow 2a^2-a-6=0$
$\Leftrightarrow (a-2)(2a+3)=0$
Vì $a\geq 0$ nên $a=2$
$\Leftrightarrow \sqrt{4x^2-4x-11}=2$
$\Leftrightarrow 4x^2-4x-11=4$
$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$
$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)
2/ ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$
$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)
$\Leftrightarrow a^2-3a-14=0$
$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)
$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$
ĐKXĐ: \(x\ge\sqrt[3]{7}\)
\(4x^3-x^2+2x-32+\left(x^3-4\right)\left(\sqrt{x^3-7}-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16\right)+\dfrac{\left(x^3-4\right)\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16+\dfrac{\left(x^3-4\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}\right)=0\)
\(\Leftrightarrow x=2\) (ngoặc đằng sau luôn dương do \(x^3-4=x^3-7+3>0\))
2.
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=x^3+3x^2+3x+1+x+1\)
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=\left(x+1\right)^3+x+1\)
Đặt \(\left\{{}\begin{matrix}2x^3=a\\x+1=b\end{matrix}\right.\)
\(\Rightarrow a^3-b^3+a-b=0\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow2x^3=x+1\Leftrightarrow\left(x-1\right)\left(2x^2+2x+1\right)=0\)
dk:...
\(pt\Leftrightarrow x^2\sqrt{9-x^2}+8x^3-9\sqrt{9-x^2}=0\)
\(\Leftrightarrow x^2\left(\sqrt{9-x^2}-2x\right)+9\left(2x-\sqrt{9-x^2}\right)+11x^3-18x=0\)
liên hợp....
a) A=\(\frac{x+1}{6x^3-6x^2}-\frac{x-2}{8x^3-8x}=\frac{x+1}{6x^2\left(x-1\right)}-\frac{x-2}{8x\left(x-1\right)\left(x+1\right)}=\frac{4\left(x+1\right)^2-3x\left(x-2\right)}{24x^2\left(x-1\right)\left(x+1\right)}=\frac{4x^2+8x+4-3x^2+6x}{24x^2\left(x-1\right)\left(x+1\right)}=\frac{x^2+14x+10}{24x^2\left(x-1\right)\left(x+1\right)}\)
1, \(x^3+3^3=\left(x+3\right)\left(x^2-3x+9\right)\)
2, đề sai
3, \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
4, \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
5, \(1000-y^3=\left(10-y\right)=\left(100+10y+y^2\right)\)
tương tự ...
8, \(8x^3+27y^3=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
Câu 2 đề ko sai nha bạn.
2) x2 - (\(\sqrt{y^3}\))2 ( y>0)
= ( x -\(\sqrt{y^3}\)) ( x +\(\sqrt{y^3}\))
\(\lim\limits_{x\rightarrow0}\frac{\left(\sqrt{8x^3+x^2+6x+9}-\left(x+3\right)\right)+\left(x+3-\sqrt[3]{9x^2+27x+27}\right)}{x^3}\)
\(=\lim\limits_{x\rightarrow0}\frac{\frac{8x^3}{\sqrt{8x^3+x^2+6x+9}+x+3}+\frac{x^3}{\left(x+3\right)^2+\left(x+3\sqrt[3]{9x^2+27x+27}+\sqrt[3]{\left(9x^2+27x+27\right)^2}\right)}}{x^3}\)
\(=\lim\limits_{x\rightarrow0}\left(\frac{8}{\sqrt{8x^3+x^2+6x+9}+x+3}+\frac{1}{\left(x+3\right)^2+\left(x+3\sqrt[3]{9x^2+27x+27}+\sqrt[3]{\left(9x^2+27x+27\right)^2}\right)}\right)\)
\(=\frac{8}{3+3}+\frac{1}{9+3.3+\sqrt[3]{27^2}}=\frac{37}{27}\)