Rút gọn :L=\(\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{\left|40\sqrt{2}-57\right|}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(E=\sqrt{\left|12\sqrt{5}-29\right|}-\sqrt{12\sqrt{5}+29}\)
\(\Leftrightarrow E^2=\left|12\sqrt{5}-29\right|-12\sqrt{5}-29\)
\(\Leftrightarrow E^2=29-12\sqrt{5}-12\sqrt{5}-29\)
\(\Leftrightarrow E^2=-24\sqrt{5}\)
\(\Leftrightarrow E=-2\sqrt{6\sqrt{5}}\)
b) Đặt \(F=\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{40\sqrt{2}+57}\)
\(\Leftrightarrow F^2=\left|40\sqrt{2}-57\right|-40\sqrt{2}-57\)
\(\Leftrightarrow F^2=57-40\sqrt{2}-40\sqrt{2}-57\)
\(\Leftrightarrow F^2=-80\sqrt{2}\)
\(\Leftrightarrow F=-4\sqrt{5\sqrt{2}}\)
26, đặt bthuc là A suy ra A2=4+4+2\(\sqrt{16-\left(10+2\sqrt{5}\right)}\) suy ra A2=8+2(\(\sqrt{5}\) -1) suy ra A=\(\sqrt{6+2\sqrt{5}}\)=\(\sqrt{5}\)+1
40, tương tự
\(x=\dfrac{3\sqrt[3]{8-3\sqrt{5}}}{\sqrt[3]{57}}.\sqrt[3]{8+3\sqrt{5}}=\dfrac{3\sqrt[3]{\left(8-3\sqrt{5}\right)\left(8+3\sqrt[]{5}\right)}}{\sqrt[3]{57}}=\sqrt[3]{\dfrac{19}{57}}=\dfrac{1}{\sqrt[3]{3}}\)
\(y=\dfrac{\left(\sqrt[3]{3}+\sqrt[4]{2}\right)\left(\sqrt[3]{3}-\sqrt[4]{2}\right)}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\left(\sqrt[4]{2}-\sqrt[3]{81}\right)\left(\sqrt[4]{2}+\sqrt[3]{81}\right)}{\sqrt[4]{2}-\sqrt[3]{81}}\)
\(=\sqrt[3]{3}-\sqrt[4]{2}+\sqrt[4]{2}+\sqrt[3]{81}=\sqrt[3]{3}+3\sqrt[3]{3}=4\sqrt[3]{3}\)
\(T=xy=\dfrac{4\sqrt[3]{3}}{\sqrt[3]{3}}=4\)
\(\sqrt{5^2-2.5.4\sqrt{2}+\left(4\sqrt{2}\right)^2}-\sqrt{5^2+2.5.4\sqrt{2}+\left(4\sqrt{2}\right)^2}\)\(\)rồi sau đấy thành hằng đẳng thức, chắc bạn chỉ mắc chỗ phân tích vậy thôi
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Giải:
1) \(\sqrt{21+12\sqrt{3}}\)
\(=\sqrt{12+9+12\sqrt{3}}\)
\(=\sqrt{12+12\sqrt{3}+9}\)
\(=\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}.3+3^2}\)
\(=\sqrt{\left(2\sqrt{3}+3\right)^2}\)
\(=2\sqrt{3}+3\)
Vậy ...
2) \(\sqrt{57-40\sqrt{2}}\)
\(=\sqrt{32+25-40\sqrt{2}}\)
\(=\sqrt{32-40\sqrt{2}+25}\)
\(=\sqrt{\left(4\sqrt{2}\right)^2-2.4\sqrt{2}.5+5^2}\)
\(=\sqrt{\left(4\sqrt{2}-5\right)^2}\)
\(=4\sqrt{2}-5\)
Vậy ...
3) \(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1+\sqrt{5}-1\)
\(=2\sqrt{5}\)
Vậy ...
1) \(\sqrt{21+12\sqrt{3}}=\sqrt{3^2+2.3.2\sqrt{3}+\left(2\sqrt{3}\right)^2}=\sqrt{\left(3+2\sqrt{3}\right)^2}\)
\(=\left|3+2\sqrt{3}\right|=3+2\sqrt{3}\)
2) \(\sqrt{57-40\sqrt{2}}=\sqrt{5^2-2.5.4\sqrt{2}+\left(4\sqrt{2}\right)^2}=\sqrt{\left(5-4\sqrt{2}\right)^2}\)
\(=\left|5-4\sqrt{2}\right|=4\sqrt{2}-5\)
3) \(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left|\sqrt{5}+1\right|+\left|\sqrt{5}-1\right|\)
\(=\sqrt{5}+1+\sqrt{5}-1\)
\(=2\sqrt{5}\)
\(L=0\)
\(L=\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{\left|40\sqrt{2}-57\right|}\)
\(=\sqrt{40\sqrt{2}-57}-\sqrt{40\sqrt{2}-57}\)
\(=0\)