cho hình bình hành ABCD có DC=2DA từ trung điểm I của CD vẽ IH vuông góc AB (H thuộc AB ) gọi E là giao điểm của AI,DH
chứng minh
a) \(\frac{DE}{HE}=\frac{DA}{HA}\)
b)\(\frac{1}{IH^2}=\frac{1}{AI^2}+\frac{1}{BI^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + CD = 2AD => AD = DI
=> ΔADI cân tại D ⇒DAIˆ=AIDˆ
+ AB // CD ⇒IAHˆ=AIDˆ⇒IAHˆ=IADˆ^
+ ΔADH có đg phân giác AE
⇒DEHE=ADAH⇒
b) + HI ⊥ AB => HI ⊥ CD
+ Lm tương tự câu a) ta cm đc : IBHˆ=IBCˆ
+ AD // BC ⇒BADˆ+ABCˆ=180o
⇒IABˆ+IBAˆ=90o⇒AIBˆ=90o
+ ΔABI vuông tại I, đg cao IH
⇒1HI2=1AI2+1BI2( theo hệ thức lượng trog Δ vuông )
cau a phai la tamgiac HBA = tamgiac AMD phai k
phai thi tu ve hinh :
a, DM | IH (GT) va AH | BH (GT) ma 2 duong thang DM; BH phan biet
=> DM // BH (dl)
=> goc MDB + DBH = 180o (tcp)
co tamgiac ADB vuong can tai A do goc A = 90o (gt) va AD = AB (gt)
=> goc MDA + goc ABH = 90o
ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)
=> goc MAD = goc ABH
xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)
=> tamgiac AMD = tamgiac BHA (ch - gn)
Có DE//BC nên: \(\frac{DA}{DB}=\frac{AE}{CE}\left(1\right)\)
Lại có AB//CG nên: \(\frac{DE}{EG}=\frac{AE}{CE}\left(2\right)\)
Từ (1) và (2) có: ĐPCM
b/Có DE//BC nên
\(\frac{HC}{HE}=\frac{BH}{HG}\left(3\right)\)
Có AB//CG nên
\(\frac{HA}{HC}=\frac{BH}{HG}\left(4\right)\)
Từ (3) và (4) có: \(\frac{HC}{HE}=\frac{HA}{HC}\RightarrowĐPCM\)
c/Ta có: \(\frac{HI}{AB}=\frac{CI}{BC}\left(5\right)\)
Và \(\frac{HI}{CG}=\frac{BI}{BC}\left(6\right)\)
Lấy (5) cộng (6) đước: \(\frac{HI}{AB}+\frac{HI}{CG}=1\Rightarrow\frac{1}{AB}+\frac{1}{CG}=\frac{1}{HI}\)
Tự vẽ hình
vẽ thêm Dựng đứng D đường thẳng vuông góc với DE cắt BC tại P
Trong tam giác DPF ta có :(theo đlý số 4 hệ thức lượng)
----> 1/CD2 =1/DP2 +1/DF2
mà CD = DA(cạnh hình vuông )
-----> ^D1 =^D2 (2 góc tương ứng )
---__> tam giác DAE= tam giác DCP
------> DE=DP( 2 góc tương ứng ) ----> 1/ DA2 =1/DE2 + 1/DF2