K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

a) \(\left(x^5+4x^3-6x^2\right):4x^2\)

\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)

\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)

b)  x^3 + x^2 - 12 x-2 x^3 - 2x^2 3x^2 - 12 3x^2 - 6x 6x - 12 x^2+3x+6 6x - 12 0

Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)

c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)

\(-x^3+\dfrac{3}{2}-2x\)

d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)

\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)

\(=x-4\)

(dùng hẳng đẳng thức thứ 7)

Bài 2 :

a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)

= 3x2 - 6x - 5x + 5x2 - 8x2 + 24

= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24 

= -11x + 24

b) (x - y)(x2 + xy + y2) + 2y3

= x3 - y3 + 2y3

= x3 + y3 

c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)

= (x - y)2 - 2(x - y)(x + y) + (x + y)2

= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2

 

18 tháng 10 2021

Bài 1 :

a]=  \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).

b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]

c]= -x3 -2x +\(\frac{3}{2}\).

d] = [ x3 - 64 ]  = [ x2 + 4x + 16][ x- 4].

22 tháng 11 2020

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

c: \(=\dfrac{x^3+2x^2+x^2+2x-10x-20}{x+2}\)

\(=x^2+x-10\)

23 tháng 8 2018

\(A=2x^2-3y+8x+y^2+11\)

\(=\left(2x^2+8x+8\right)+\left(y^2-3y+\frac{9}{4}\right)+\frac{3}{4}\)

\(=2\left(x^2+4x+4\right)+\left(y^2-3y+\frac{9}{4}\right)+\frac{3}{4}\)

\(=2\left(x+2\right)^2+\left(y-\frac{3}{2}\right)^2+\frac{3}{4}\)

Vì: \(2\left(x+2\right)^2+\left(y-3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x,y\)

\(\Rightarrow2\left(x+2\right)^2+\left(y-\frac{3}{2}\right)^2+\frac{3}{4}>0\forall x,y\)

=.= hok tốt!!

23 tháng 8 2018

Ta có\(A=2x^2-3y+8x+y^2+11\)

\(=2.\left(x^2+2.x.4+4^2\right)-5-3y+y^2\)

\(=2.\left(x+4\right)^2+\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}\right)-5-\frac{9}{4}\)

\(=2.\left(x+4\right)^2+\left(y-\frac{3}{2}\right)^2-\left(5+\frac{9}{4}\right)< 0\)với mọi x

Không thể làm luôn dương được , chắc mình sai , thôi góp ý vậy

đỡ mik vớiCâu 10: Tính (a+b+c)(a2+b2+c2-ab-bc-ca) bằng :a/a3+b3+c3 –abc    b/ a3+b3+c3 +3abc  c/ a3+b3+c3 –3abc   d/ a3+b3+c3 +abcCâu 11: Tính và thu gọn : 3x2(3x2-2y2)-(3x2-2y2)(3x2+2y2) dược kết quả là :a/ 6x2y2-4y4b/ -6x2y2+4y4c/-6x2y2-4y4d/ 18x4-4y4Câu 12: Biểu thức rút gọn và khai triển của R là :R=(2x-3).(4+6x)-(6-3x)(4x-2) là:a/ 0      b/ 40x   c/ -40x     d/ Kết quả khácCâu 13: Cho biểu thức : (3x-5)(2x+11)-(2x+3)(3x+7) kết quả...
Đọc tiếp

đỡ mik với

Câu 10: Tính (a+b+c)(a2+b2+c2-ab-bc-ca) bằng :
a/a3+b3+c3 –abc    b/ a3+b3+c3 +3abc 

 c/ a3+b3+c3 –3abc   d/ a3+b3+c3 +abc

Câu 11: Tính và thu gọn : 3x2(3x2-2y2)-(3x2-2y2)(3x2+2y2) dược kết quả là :

a/ 6x2y2-4y4
b/ -6x2y2+4y4
c/-6x2y2-4y4
d/ 18x4-4y4

Câu 12: Biểu thức rút gọn và khai triển của R là :R=(2x-3).(4+6x)-(6-3x)(4x-2) là:
a/ 0      b/ 40x   c/ -40x     d/ Kết quả khác
Câu 13: Cho biểu thức : (3x-5)(2x+11)-(2x+3)(3x+7) kết quả thực hiện phép tính là
a/ 6x2-15x -55          b/ -43x-55      c/ K phụ thuộc biến x       d/ Kết qủa khác
Câu 14: Tính (x-y)(2x-y) ta được :
a/ 2x2+3xy-y2
b/ 2x2-3xy+y2
c/ 2x2-xy+y2
d/ 2x2+xy –y

Câu 15: Tính (x2
-2xy+y2
).(x-y) bằng :

a/-x
3
-3x2y+3xy2
-y
3
b/x3
-3x2y+3xy2
-y
3
c/x3
-3x2y-3xy2
-y
3
d/-x3-3x2y+3xy2+y3

Câu 16: Biểu thức rút gọn của (2x+y)(4x2
-2xy+y2
) là :

a/ 2x3
-y
3
b/ x3
-8y3
c/ 8x3
-y
3
d/8x3+y3

Câu 17: Tính (x-2)(x-5) bằng
a/ x2+10 b/ x2+7x+10 c/ x2

-7x+10 d/ x2
-3x+10

Câu 18: Cho A=3.(2x-3)(3x+2)-2(x+4)(4x-3)+9x(4-x). Để A có giá trị bằng 0 thì x
bằng :
a/ 2 b/ 3 c/ Cả a,b đều đúng d/ Kết quả khác
Câu 19: Tìm x biết (5x-3)(7x+2)-35x(x-1)=42. x bằng
a/ -2 b/
1
2
c/ 2 d/ Kết quả khác
Câu 20: Tìm x biết (3x+5)(2x-1)+(5-6x)(x+2)=x . giá trị x bằng
a/ 5 b/ -5 c/ -3 d/ Kết quả khác
câu 21: Giá trị của biểu thức A =(2x+y)(2z+y)+(x-y)(y-z) với x=1;y=1 ;z=-1 là
a/ 3 b/ -3 c/2 d/-2
Câu 22: Giá trị của x thoả mãn (10x+9).x-(5x-1)(2x+3) =8 là
a/1,5 b/ 1,25 c/ -1,25 d/3
Câu 23: Giá trị x thoả mãn ;x(x+1)(x+6)-x3 =5x là

a/ 0 b/17− c/ 0 hoặc17d/ 0 hoặc17−

Câu 25: Giá trị nhỏ nhất của y=(x-3)2 +1 là
a/ khi x=3 b/3 khi x=1 c/ 0 khi x=3 d/ không có GTNN trên TXĐ
Câu 26: Chọn câu sai
Với mọi số tự nhiên n,giá trị của biểu thức (n+7)2-(n-5)2chia hết cho

a/ 24 b/16 c/8 d/ 6
Câu 27: Rút gọn biểu thức (x+y)2 +(x-y)2-2x2ta được kết quả là :

a/ 2y b/2y2c/-2y2d/ 4x+2y2
Câu 28: Với mọi giá trị của biến số giá trị của biểu thức 16x4-40x2y3 +25y6là 1 số
a/ dương b/Không dương c/ âm d/ không âm
Câu 29: Thực hiện phép tính :( 5x+4)2 +(1-5x)2 +2(5x+4)(1-5x) ta được
a/ (x+5)2
b/ (3+10x)2

c/ 9 d/25

Câu 30: Thực hiện phép tính (2x-3)2 +(3x+2)2 +13(1-x)(1+x) ta được kết quả là :
a/ 26x2
b/ 0 c/-26 d/26
Câu 31: Chọn kết quả đúng ; (2x+3y)(2x-3y) bằng
a/ 4x2-9y2
b/ 2x2-3y2
c/ 4x2+9y2

d/ 4x-9y

Câu 32: Tính Tính (x+1/4)^2ta được :

a/ x2-12x + 1/4

b/ x2 +12x + 18
c/ x2 +12x + 116
d/ x2-12x -1/4

Câu 33: Với mọi x thuộc R phát biểu nào sau đây là sai
a/ x2-2x+3>0 b/ 6x-x2-10<0 c/ x2 –x-100<0 d/ x2 –x+1>0

9
4 tháng 12 2021
1÷+×/=÷#$%!=
4 tháng 12 2021

chúc mng lm bài được

30 tháng 9 2023

\(\dfrac{1}{x+2}+\dfrac{5}{2x^2+3x-2}\\ =\dfrac{1}{x+2}+\dfrac{5}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2x-1}{\left(2x-1\right)\left(x+2\right)}+\dfrac{5}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2x-1+5}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2x+4}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}\\ =\dfrac{2}{2x-1}\)

__

`x^3+1` chứ cậu nhỉ?

\(\dfrac{-3x^2}{x^3+1}+\dfrac{1}{x^2-x+1}+\dfrac{1}{x+1}\\ =\dfrac{-3x^2}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{1}{x^2-x+1}+\dfrac{1}{x+1}\\ =\dfrac{-3x^2}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x^2-x+1}{\left(x-1\right)\left(x^2-x+1\right)}\\ =\dfrac{-3x^2+x+1+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-2x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-2\left(x^2-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-2\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-2\left(x-1\right)}{x^2-x+1}\)

__

 

30 tháng 9 2023

a) \(\dfrac{1}{x+2}+\dfrac{5}{2x^2+3x-2}\)

\(=\dfrac{1}{x+2}+\dfrac{5}{2x^2+4x-x-2}\)

\(=\dfrac{2x-1}{\left(2x-1\right)\left(x+2\right)}+\dfrac{5}{2x\left(x+2\right)-\left(x+2\right)}\)

\(=\dfrac{2x-1+5}{\left(2x-1\right)\left(x+2\right)}\)

\(=\dfrac{2x+4}{\left(2x-1\right)\left(x+2\right)}\)

\(=\dfrac{2\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}\)

\(=\dfrac{2}{2x-1}\)

\(---\)

b) \(\dfrac{-3x^2}{x^3+1}+\dfrac{1}{x^2-x+1}+\dfrac{1}{x+1}\) (sửa đề)

\(=\dfrac{-3x^2}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-3x^2+x+1+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-2x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-2\left(x^2-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-2\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-2x+2}{x^2-x+1}\)

\(---\)

c) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)

\(=\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)

\(=\dfrac{1+x+1-x}{1^2-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}\)

\(=\dfrac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}\)

\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}\)

\(=\dfrac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}\)

\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}\)

\(=\dfrac{8}{1-x^8}\)

#\(Toru\)

31 tháng 1 2019

a) Rút gọn P = 3  Þ giá trị của biểu thức P không phụ thuộc vào giá trị của m.

b) Rút gọn Q = 9  Þ giá trị của biểu thức Q không phụ thuộc vào giá trị của m.

6 tháng 6 2021

a)P=x(2x+1)-x2(x+2)+x3-x+3

   P=2x2+x-x3-2x2+x3-x+3

   P=(2x2-2x2)+(x-x)+(-x3+x3)+3

   P= 0           +   0   +     0     +3

   P=3 

Vậy giá trị của của biểu thức đã cho không phụ thuộc vào giá trị của biến x

 

 

24 tháng 9 2021

\(a,x^4-2x^3+6x^2+x+14\\ =\left(x^4-3x^3+7x^2\right)+\left(x^3-3x^2+7x\right)+\left(2x^2-6x+14\right)\\ =\left(x^2-3x+7\right)\left(x^2+x+2\right):\left(x^2-3x+7\right)=x^2+x+2\)

Ta có \(x^2+x+2=x^2+x+\dfrac{1}{4}+\dfrac{7}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\)

Vậy ...

\(b,A=x^3+3xy+y^3\\ A=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\\ A=x^2-xy+y^2+3xy\\ A=x^2+2xy+y^2=\left(x+y\right)^2=1\)