cho 2 số dương x,y thỏa mãn x+y <= 1. tìm giá trị nhỏ nhất
A= \(\frac{1}{x^2+y^2}+\frac{501}{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có
Khi đó
Vậy giá trị nhỏ nhất của biểu thức P là 3 + 2 2
Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)
vi x la so nguyen Dưỡng nen x-2 la so nguyen duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6
Voi x=3 => y= 6
voi x=6=> y=3
vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)
Với x, y là hai số dương, dễ dàng chứng minh x + y 2,
do x + y = 2 => 0 < xy ≤ 1 (1)
Ta lại có: 2xy( x2 + y2) ≤
=> 0 < 2xy(x2 + y2) ≤ (x+y)4/4 = 4
=> 0 < xy( x2 + y2) ≤ 2 (2)
Nhân (1) với (2) theo vế ta có: x2y2 ( x2 + y2) ≤ 2 (đpcm)
Dấu “=” xảy ra khi x = y = 1
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{500,5}{xy}\)
Áp dụng BĐT bu - nhi a cốp xki dưới dạng mẫu thức và BĐT cô si :
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{500,5}{xy}\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{500,5}{\frac{\left(x+y\right)^2}{4}}\) = \(\frac{4}{1}+\frac{500.5}{\frac{1}{4}}=2006\)
Vậy GTNN của A là 2006 tại x = y = 1/2