Cho tam giác ABC , trên BC lấy M trên AB lấy N sao cho BM=MC và AN=NB . Nối AM và CN cắt nhau tại O biết AM=24cm Tính OA
Ai nhanh nhất Trình bày dễ hiểu mình bình chọn cho . Cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BM=MC => AM là đường trung tuyến của tam giác ABC
AN=NB => CN là đường trung tuyến của tam giác ABC
AM cắt CN tại O => O là trọng tâm của tam giác ABC => \(AO=\frac{2}{3}AM=\frac{2}{3}.24=16\left(cm\right)\)
Nối B với O
SOCM = SOMB (BM = MC ; chung đường cao hạ từ O)
SCNB = SACN (AN = NB ; chung đường cao hạ từ C) .
SONB = SAON . SAON = \(\frac{1}{2}\)SABC - SONMB. SOMC = \(\frac{1}{2}\)SABC - SONMB
=> SAON = SOMC ; SOMC = \(\frac{1}{6}\)SABC và SACO
=> độ dài đoạn OA = \(24\times\left(\frac{1}{2}+\frac{1}{6}\right)=16\left(cm\right)\)
Ta có:
Nối \(B\) với \(O\)
\(S_{OCM}=S_{OMB}\left(BM=MC\right)\) \(\Rightarrow\) chung đường cao hạ từ \(O\)
\(S_{CNB}=S_{ACN}=\left(AN=NB\right)\Rightarrow\) chung đường cao hạ từ \(C\)
\(S_{ONB}=S_{AON}.S_{AON}=\dfrac{1}{2}S_{ABC}-S_{ONMB}.S_{OMC}\)
\(=\dfrac{1}{2}S_{ABC}-S_{ONMB}\)
\(\Rightarrow S_{AON}=S_{OMC};S_{OMC}=\dfrac{1}{6}S_{ABC}\) và \(S_{ACO}\)
Độ dài đoạn \(OA\) là:
\(24.\left(\dfrac{1}{2}+\dfrac{1}{6}\right)=16\left(cm\right)\)
ĐÂY LÀ TOÁN LỚP SÁU MÌNH CHỌN NHẦM LỚP MONG CÁC BẠN THÔNG CẢM
Đây là Toán lớp 5 nên ta sẽ dùng diện :)
Ta thấy dt(ANC)=dt(AMC) \(\left(=\frac{dt\left(ABC\right)}{2}\right)\)
Từ đó ta thấy dt(ANO)=dt(MOC).
Do tam giác ANO và BNO chung chiều cao, đấy bằng nhau nên diện tích bằng nhau. tương tự diện tích tam giác MOC và BOM bằng nhau, diện tích ABM bằng diện tích AMC.
Như vậy \(\frac{dt\left(OMC\right)}{dt\left(AMC\right)}=\frac{dt\left(OMC\right)}{dt\left(ABM\right)}=\frac{1}{3}\Rightarrow\frac{dt\left(AOC\right)}{dt\left(AMC\right)}=\frac{2}{3}\Rightarrow\frac{OA}{AM}=\frac{2}{3}\)
Vậy OA = 16 cm.
Have a good time :)
Ta có: \(\left\{{}\begin{matrix}BM=MC\left(M\in BC\right)\\AN=NB\left(N\in AB\right)\end{matrix}\right.\left(gt\right)\)
\(\Rightarrow M,N\) lần lượt là các trung điểm của \(BC\) và \(AB\)
\(\Rightarrow AM,CN\) là các đường trung tuyến của \(\Delta ABC\)
Xét \(\Delta ABC\) có:
\(AM,CN\) là các đường trung tuyến
\(AM\cap CN=\left\{O\right\}\)
Do đó: \(O\) là trọng tâm của \(\Delta ABC\) (t/c)
\(\Rightarrow OA=\dfrac{2}{3}AM\) (t/c)
\(\Rightarrow OA=\dfrac{2}{3}\cdot24=16\left(cm\right)\) (vì \(AM=24cm\))
Vậy \(OA=16cm\).
AM, CN là trung tuyến => O là trọng tâm tam giác ABC => OA/AM = 2/3 => OA = 16cm