K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

           N = x2 + x + 1

              = x2 + 2.x.\(\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)

             =  \(\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi x 

          \(\Rightarrow\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)

hay \(N\ge\frac{-1}{4}\)

Dấu " = " xảy ra <=> \(x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy GTNN của \(N=\frac{-1}{4}\Leftrightarrow x=\frac{-1}{2}\)

21 tháng 8 2018

Bài của  NGUYỄN VĂN HUY  sai nhé

\(N=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra   <=>     \(x=-\frac{1}{2}\)

Vậy MIN \(N=\frac{3}{4}\)  khi   \(x=-\frac{1}{2}\)

2 tháng 10 2023

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

26 tháng 6 2019

\(A=x-x^2+\frac{1}{2}\)

\(\Leftrightarrow A=-\left(x^2-x-\frac{1}{2}\right)\)

\(\Leftrightarrow A=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{3}{4}\right)\)

\(\Leftrightarrow A=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\)nên \(A=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]\le\frac{3}{4}\)

Vậy \(A_{min}=\frac{3}{4}\)(Dấu "="\(\Leftrightarrow x=\frac{1}{2}\))

26 tháng 6 2019

\(A_{max}=\frac{3}{4}\)nhé

\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)

Dấu = xảy ra khi x=-1

2 tháng 9 2021

a) \(N=-1-x-x^2=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)

\(maxN=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(B=3x^2+4x-13=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{35}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{35}{3}\ge-\dfrac{35}{3}\)

\(minB=-\dfrac{35}{3}\Leftrightarrow x=-\dfrac{2}{3}\)

a: Ta có: \(N=-x^2-x-1\)

\(=-\left(x^2+x+1\right)\)

\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: ta có: \(B=3x^2+4x-13\)

\(=3\left(x^2+\dfrac{4}{3}x-\dfrac{13}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{43}{9}\right)\)

\(=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{43}{3}\ge-\dfrac{43}{3}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)

\(C\ge-7\forall x\)

Dấu '=' xảy ra khi x=-1/2

16 tháng 1 2022

Có c>=0-7=-7 xảy ra khi x=-1/2

Các dạng bài này ko có giới hạn x thì ko tìm dc gtln đâu nhé 

30 tháng 10 2016

(x-1)(x-2)(x-3)(x-4)+15

=(x2-5x+4)(x2-5x+6)+15

Đặt t=x2-5x+4 ta có:

t(t+2)+15=t2+2t+15

=t2+2t+1+14=(t+1)2+14\(\ge\)14

Dấu = khi t=-1 => x2-5x+4=-1 =>x=\(\frac{5\pm\sqrt{5}}{2}\)

Vậy....