G=12010+21010+...+101010/21010+41010+...+201010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=4-5=-1\Rightarrow\left[{}\begin{matrix}z_1=2+i\\z_2=2-i\end{matrix}\right.\)
\(\Rightarrow\left(z_1-1\right)^{2019}+\left(z_2-1\right)^{2019}=\left(i+1\right)^{2019}+\left(i-1\right)^{2019}\)
\(=\left(i+1\right)\left[\left(i+1\right)^2\right]^{1009}+\left(i-1\right)\left[\left(i-1\right)^2\right]^{1009}\)
\(=\left(i+1\right)\left(2i\right)^{1009}+\left(1-i\right)\left(-2i\right)^{1009}=\left(2i\right)^{1009}\left(i+1+i-1\right)=\left(2i\right)^{1009}.2i=\left(2i\right)^{1010}=-2^{1010}\)
=>D
P/s: Sry nó bị trôi thông báo nên toi ko để ý
Đổi ra hỗn số ta được
A = 20 10 + 1 20 10 − 1 = 20 10 − 1 + 2 20 10 − 1 = 1 + 2 20 10 − 1 ; B = 20 10 − 1 20 10 − 3 = 20 10 − 3 + 2 20 10 − 3 = 1 + 2 20 10 − 3 .
Vì 20 10 − 1 > 20 10 − 3 ⇒ 2 20 10 − 1 < 2 20 10 − 3 ⇒ A < B (so sánh hai phân số cùng tử).
a, Ta có 10 30 = 10 3 10 = 1000 10
2 100 = 2 10 10 = 1024 10
Vì 1000<1024 nên 1000 10 < 1024 10
Vậy 10 30 < 2 100
b, Ta có: 333 444 = 333 4 111 = 3 . 111 4 111 = 81 . 111 4 111
444 333 = 444 3 111 = 4 . 111 3 111 = 64 . 111 3 111
Vì 81 > 64 và 111 4 > 111 3 nên 81 . 111 4 111 > 64 . 111 3 111
Vậy 333 444 > 444 333
c, Ta có: 21 5 = 3 . 7 15 = 3 15 . 7 15
27 5 . 49 8 = 3 3 5 . 7 2 8 = 3 15 . 7 16
Vì 7 15 < 7 16 nên 3 15 . 7 15 < 3 15 . 7 16
Vậy 21 5 < 27 5 . 49 8
d, Ta có: 3 2 n = 3 2 n = 9 n
2 3 n = 2 3 n = 8 n
Vì 8 < 9 nên 8 n < 9 n n ∈ N *
Vậy 3 2 n > 2 3 n
e, Ta có: 2017.2018 = (2018–1).(2018+1) = 2018.2018+2018.1–1.2018–1.1
= 2018 2 - 1
Vì 2018 2 - 1 < 2018 2 nên 2017.2018< 2018 2
f, Ta có: 100 - 99 2000 = 1 2000 = 1
100 + 99 0 = 199 0 = 1
Vậy 100 - 99 2000 = 100 + 99 0
g, Ta có: 2009 10 + 2009 9 = 2009 9 . 2009 + 1
= 2010 . 2009 9
2010 10 = 2010 . 2010 9
Vì 2009 9 < 2010 9 nên 2010 . 2009 9 < 2010 . 2010 9
Vậy 2009 10 + 2009 9 < 2010 10
a) \(243^5=\left(3^5\right)^5=3^{25}\)
\(3\cdot27^5=3\cdot\left(3^3\right)^5=3\cdot3^{15}=3^{16}\)
mà \(3^{25}>3^{16}\)
nên \(243^5>3\cdot27^5\)
b) \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
mà \(5^{20}< 5^{21}\)
nên \(625^5< 125^7\)
c) \(202^{303}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=\left(303^2\right)^{101}=91809^{101}\)
mà \(8242408^{101}>91809^{101}\)
nên \(202^{303}>303^{202}\)
b) |-128| : [ 45 2 – ( 2010 - 2008 0 . 1 2010 )]
= 128 : [ 2025 – ( 2010 – 1 . 1 )] = 128 : ( 2025 – 2009 ) = 128 : 16 = 8