phân tích đa thức thành nhân tử
a(b^2+c^2+bc)+b(a^2+c^2+ac)+c(a^2+b^2+ab)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=8abc+4(ab+bc+ca)+2(a+b+c)+1�=8���+4(��+��+��)+2(�+�+�)+1
A = 8abc + 4ab + 4bc + 4ca + 2a + 2b + 2c + 1
A=(8abc+4ab)+(4bc+2b)+(4ca+2a)+(2c+1)�=(8���+4��)+(4��+2�)+(4��+2�)+(2�+1)
A=4ab(2c+1)+2b(2c+1)+2a(2c+1)+(2c+1)�=4��(2�+1)+2�(2�+1)+2�(2�+1)+(2�+1)
A=(2c+1)(4ab+2a+2b+1)�=(2�+1)(4��+2�+2�+1)
A=(2c+1)[2a(2b+1)+(2b+1)]�=(2�+1)[2�(2�+1)+(2�+1)]
A=(2a+1)(2b+1)(2c+1)
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2
=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c
=b^2(c-a)+b(c^2-a^2)+ac(c-a)
=(c-a)(b^2+ac)+b(c-a)(c+a)
=(c-a)(b^2+ac+bc+ba)
=(c-a)[b^2+bc+ac+ab]
=(c-a)[b(b+c)+a(b+c)]
=(c-a)(b+c)(b+a)
\(a,=x\left(2x-y\right)+\left(2x-y\right)=\left(x+1\right)\left(2x-y\right)\\ b,=\left(a+b\right)\left(c-2\right)\\ c,=x\left(x+4y\right)+2\left(x+4y\right)=\left(x+2\right)\left(x+4y\right)\\ d,=x\left(x+2y\right)+3\left(x+2y\right)=\left(x+3\right)\left(x+2y\right)\)
ai có thể giảng cho mình dạng toán tìm số tự nhiên thỏa mãn đièu kiện chia hết ko
hãy nêu ra cách giải cụ thể cho câu sau 3a-11 chia hết cho a+2 tìm a
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=a^2b-ab^2+b^2c-bc^2+ac^2-a^2c\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a^2-bc-ab-ac\right)\)
\(=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]\)
a ( b2 + c2 + bc ) + b ( a2 + c2 + ac ) + c ( a2 + b2 + ab )
= ab2 + ac2 + abc + ba2 + bc2 + abc + ca2 + cb2 +abc
= ( ab2 + a2b + abc ) + ( ac2 + a2c + abc ) + ( bc2 + b2c + abc )
= ab ( a + b + c ) + ac ( a + b + c ) + bc ( a + b + c )
= ( a + b + c ) ( ab + ac + bc )
\(a\left(b^2+c^2+bc\right)+b\left(a^2+c^2+ac\right)+c\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+abc+ba^2+bc^2+abc+ca^2+cb^2+abc\)
\(=\left(ab^2+ba^2+abc\right)+\left(bc^2+cb^2+abc\right)+\left(ca^2+ac^2+abc\right)\)
\(=ab\times\left(a+b+c\right)+bc\times\left(a+b+c\right)+ca\times\left(a+b+c\right)\)
\(=\left(a+b+c\right)\times\left(ab+bc+ca\right)\)