K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{n!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{n-1!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

\(=\frac{n!-1}{n!}\)

11 tháng 5 2015

A=(1/1.2.3-1/2.3.4)+(1/2.3.4-1/3.4.5)+..............+(1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3))

A=1/1.2.3-1/(n+1)(n+2)(n+3)

A=1/18-1/(n+1)(n+2)(n+3)

đúng nhé

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)

b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).

c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).

d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).

e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).

g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).

26 tháng 8 2016

quy luật đây (n^2+n-1)/[(n+1)

26 tháng 8 2016

áp dụng vô lm

3 tháng 9 2016

a) 1 + 2 + 3 + ... + n

\(\frac{\left(n+1\right).n}{2}\)

b) 1 + 3 + 5 + 7 + ... + (2n + 1)

\(\left(2n+1+1\right).\left(\frac{2n+1-1}{2}+1\right):2\)

\(=\left(2n+2\right).\left(\frac{2n}{2}+1\right):2\)

\(=2.\left(n+1\right).\left(n+1\right):2\)

\(=\left(n+1\right)^2\)

c) 2 + 4 + 6 + 8 + ... + 2.n

= 2.(1 + 2 + 3 + 4 + ... + n)

\(=2.\frac{\left(n+1\right).n}{2}\)

= (n + 1).n

19 tháng 10 2021

1,Tính các tổng sau. a) 1 + 2+ 3+ 4 +....+ n

b) 2+4+6+8+...+2.n

c) 1+3+5+7+...+(2.n +1)

d) 1+4+7+10+..+2005

e) 2+5+8+...+2006

f) 1+5+9+..+2001

2,Tính nhanh : A = 1 +2 + 4 + 8 +16 + ...+ 8192 3,

a, Tính tổng các số lẻ có 2 chữ số.

b,Tính tổng các số chẵn có 2 chữ số.

4,a,Tổng 1 +2+3+....+n có bao nhiêu số hạng để kết quả tổng bằng 190

b,Có hay không số tự nhiên n sao cho 1+2+3+...+n =2004

c,Chứng minh rằng: [(1+2+3+...+n)-7]không chia hết cho 10

8 tháng 3 2023

Câu a:

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n+1):

     S += i

print("Tổng S =", S)

Câu b:

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n, 2):

     S += i

print("Tổng S =", S)

Câu c: 

def calc_sum(n):

     s=0

     for i in range(1,n+1):

          s += 2*i

     return s

n = int(input("Nhập vào số n: "))

print("Tổng S=2+4+6+...2n là:",calc_sum(n))

 

9 tháng 3 2023

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n+1):

     S += i

print("Tổng S =", S)

Câu b:

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n, 2):

     S += i

print("Tổng S =", S)

Câu c: 

def calc_sum(n):

     s=0

     for i in range(1,n+1):

          s += 2*i

     return s

n = int(input("Nhập vào số n: "))

print("Tổng S=2+4+6+...2n là:",calc_sum(n))

11 tháng 8 2015

\(3A=3+3^2+...3^{2003}\)

\(3A-A=\left(3-3\right)+\left(3^2-3^2\right)+...+3^{2003}-1\)

\(\Leftrightarrow\Leftrightarrow A=\frac{3^{2003}-1}{2}\)