Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1/1.2.3-1/2.3.4)+(1/2.3.4-1/3.4.5)+..............+(1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3))
A=1/1.2.3-1/(n+1)(n+2)(n+3)
A=1/18-1/(n+1)(n+2)(n+3)
đúng nhé
a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).
d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).
e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).
a) 1 + 2 + 3 + ... + n
= \(\frac{\left(n+1\right).n}{2}\)
b) 1 + 3 + 5 + 7 + ... + (2n + 1)
= \(\left(2n+1+1\right).\left(\frac{2n+1-1}{2}+1\right):2\)
\(=\left(2n+2\right).\left(\frac{2n}{2}+1\right):2\)
\(=2.\left(n+1\right).\left(n+1\right):2\)
\(=\left(n+1\right)^2\)
c) 2 + 4 + 6 + 8 + ... + 2.n
= 2.(1 + 2 + 3 + 4 + ... + n)
\(=2.\frac{\left(n+1\right).n}{2}\)
= (n + 1).n
1,Tính các tổng sau. a) 1 + 2+ 3+ 4 +....+ n
b) 2+4+6+8+...+2.n
c) 1+3+5+7+...+(2.n +1)
d) 1+4+7+10+..+2005
e) 2+5+8+...+2006
f) 1+5+9+..+2001
2,Tính nhanh : A = 1 +2 + 4 + 8 +16 + ...+ 8192 3,
a, Tính tổng các số lẻ có 2 chữ số.
b,Tính tổng các số chẵn có 2 chữ số.
4,a,Tổng 1 +2+3+....+n có bao nhiêu số hạng để kết quả tổng bằng 190
b,Có hay không số tự nhiên n sao cho 1+2+3+...+n =2004
c,Chứng minh rằng: [(1+2+3+...+n)-7]không chia hết cho 10
Câu a:
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n+1):
S += i
print("Tổng S =", S)
Câu b:
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n, 2):
S += i
print("Tổng S =", S)
Câu c:
def calc_sum(n):
s=0
for i in range(1,n+1):
s += 2*i
return s
n = int(input("Nhập vào số n: "))
print("Tổng S=2+4+6+...2n là:",calc_sum(n))
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n+1):
S += i
print("Tổng S =", S)
Câu b:
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n, 2):
S += i
print("Tổng S =", S)
Câu c:
def calc_sum(n):
s=0
for i in range(1,n+1):
s += 2*i
return s
n = int(input("Nhập vào số n: "))
print("Tổng S=2+4+6+...2n là:",calc_sum(n))
\(3A=3+3^2+...3^{2003}\)
\(3A-A=\left(3-3\right)+\left(3^2-3^2\right)+...+3^{2003}-1\)
\(\Leftrightarrow\Leftrightarrow A=\frac{3^{2003}-1}{2}\)
\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n-1}{n!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{n!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{n-1!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
\(=\frac{n!-1}{n!}\)