M = 820 + 4 20 / 425 + 64 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(=2^{10}=1024\)
\(M=\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=2^{10}=1024\)
\(M=\frac{4^{20}.\left(2^{20}+1\right)}{4^{15}.\left(4^{10}+1\right)}\)
\(M=4^5\)
\(M=1024\)
Chúc bạn học tốt cho mik k nha.Thanks
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(M=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(M=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(M=2^{10}\)
\(M=1024\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{4^{20}.\left(2^{20}+1\right)}{4^{25}+\left(4^3\right)^5}=\frac{4^{20}.\left(2^{20}+1\right)}{4^{25}+4^{15}}\)
\(=\frac{4^{20}.\left(4^{10}+1\right)}{4^{25}.\left(4^{10}+1\right)}=\frac{1}{4^5}=\frac{1}{1024}\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\times\left(2^{20}+1\right)}{2^{30}\times\left(2^{20}+1\right)}=2^{10}=1024\)
Chúc bạn học tốt ^^
\(M=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
= \(\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
Ta có:1+2+3+....+n (Gồm n số hạng)
=> (n+1) . n : 2 =820
=>(n+1).n=820.2
=>(n+1).n=1640
=>(n+1).n=40.41
=>n =40
Vậy n =40
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(=\frac{2^{40}}{2^{30}}=2^{10}\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{25}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{25}\left(1+2^5\right)}\)
\(=\frac{2^{15}\left(2^{20}+1\right)}{1+2^5}\)
\(=\frac{2^{35}+2^{15}}{1+2^5}\)
\(M=\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(\Leftrightarrow M=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(\Leftrightarrow M=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(\Leftrightarrow M=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(\Leftrightarrow M=\dfrac{2^{40}}{2^{30}}\)
\(\Leftrightarrow M=2^{10}.\)