K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

Bài 2

a, \(\dfrac{4}{5}+\dfrac{2}{7}-\dfrac{7}{10}=\) \(\dfrac{27}{70}\)

15 tháng 8 2018

giải thik từng bước đi bạn

17 tháng 8 2018

Trả lời:

\(a)\frac{313}{370}< \frac{314}{371}\)

\(b)\frac{-3}{4}< -0,8\)

\(c)\frac{-151515}{323232}< \frac{3}{7}\)

20 tháng 8 2018

Bài 1: 

b) \(\frac{-3}{4}\) và \(-0,8\)

Ta có: \(\frac{-3}{4}=\frac{-15}{20}\) ; \(-0,8=\frac{-8}{10}=\frac{-16}{20}\)

So sánh: \(\frac{-15}{20}>\frac{-16}{20}\)

=> \(\frac{-3}{4}>-0,8\)

Bài 2:

a) \(\frac{4}{5}+\frac{2}{7}-\frac{7}{10}\)

\(\frac{56}{70}+\frac{20}{70}-\frac{49}{70}\)

\(\frac{27}{70}\)

Câu b tương tự nhưng MSC là 12 nha, đúng thì k cho mik. 

16 tháng 8 2018

a, \(\dfrac{313}{370}=1-\dfrac{57}{370}\\ \dfrac{314}{371}=1-\dfrac{57}{371}\)

Mà: \(\dfrac{57}{370}>\dfrac{57}{371}\Rightarrow1-\dfrac{57}{370}< 1-\dfrac{57}{371}\)

\(\Leftrightarrow\dfrac{313}{370}< \dfrac{314}{371}\)

b, \(-\dfrac{3}{4}=-0,75\)

Do: \(0,75< 0,8\)

\(\Rightarrow-0,75>-0,8\)

\(\Leftrightarrow\dfrac{-3}{4}>-0,8\)

c, \(-\dfrac{151515}{323232}< 0< \dfrac{3}{7}\)

hay \(\dfrac{-151515}{323232}< \dfrac{3}{7}\)

25 tháng 8 2018

ta có: \(1+\frac{-313}{370}=\frac{57}{370}\)

\(1+\frac{-314}{371}=\frac{57}{371}\)

\(\Rightarrow\frac{57}{370}>\frac{57}{371}\)

\(\Rightarrow1+\frac{-313}{370}>1+\frac{-314}{371}\)

\(\Rightarrow\frac{-313}{370}>\frac{-314}{371}\)

=> x > y

25 tháng 8 2018

Ta có: 1+ (-131/370)= 57/370

           1+ (-314/371)= 57/371

Vì 57=57,mà 370<371

=>57/370>57/371

=>x<y

Chúc bạn thành công !

PhanTranNgocThao kết bạn với minh nhe 

Câu hỏi của Lê Thị Minh Trang - Toán lớp 6 - Học toán với OnlineMath

Xem bài 1 nhé !

Bài 1:

Xét vế phải :

\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}\)\(-1=2\)\(\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left(\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)

Đẳng thức được chứng tỏ là đúng

Bài 2 :

Đặt \(A'=\frac{3}{4}.\frac{4}{5}.\frac{7}{8}...\frac{4999}{5000}\)

Rõ ràng \(A< A'\)

SUY RA \(A^2< AA'=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)

Nên \(A< \frac{1}{50}=0,02\)

Chúc bạn học tốt ( -_- )