K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

a)  \(A=2+2^2+2^3+2^4+....+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)\)

\(=\left(1+2\right)\left(2+2^3+...+2^{59}\right)\)

\(=3\left(2+2^3+...+2^{59}\right)\)\(⋮\)\(3\)

b)  mk chỉnh lại đề

\(7^6+7^5+7^4=7^4\left(7^2+7+1\right)=7^2.57\)\(⋮\)\(57\)

24 tháng 10 2023

ko bt lm

 

14 tháng 8 2017

Ai giúp mình với

16 tháng 1 2018

toán lớp mấy đấy

12 tháng 7 2018

ai tích mình mình tích lại cho

1 tháng 3 2020

k di

e he he

12 tháng 10 2021

giải bài toán sau a) cho M = 2 mũ 1+ 2 mũ 2+ 2 mũ 3+ 2 mũ 4+....................+2 mũ 20.chứng tỏ rằng M chia hết cho5

b) tìm số dư khi chia B cho 13,với B = 3 mũ 0+3 mũ 1+ 3 mũ 2+3 mũ 3+................+3 mũ 60

c) cho abc-deg chia hết cho 7.chứng tỏ rằng abcdeg chia hết cho 7

28 tháng 12 2017

Câu 1/     \(A=1+7+7^2+7^3+7^4+7^5\)       Nhân hai vế với 7 được :

\(7A=7+7^2+7^3+7^4+7^5+7^6\)   Do đó : \(6A=7^6-1\)  (Đã lấy đẳng thức dưới trừ đẳng thức trên vế theo vế tương ứng)

Suy ra :  \(A=\frac{\left(7^3\right)^2-1}{6}=\frac{\left(7^3-1\right)\left(7^3+1\right)}{6}=\)\(\frac{\left(7-1\right)\left(7^2+7.1+1^2\right)\left(7+1\right)\left(7^2-7.1+1^2\right)}{6}\)

(Đã khai triển các hằng đẳng thức đáng nhớ ) Như vậy : \(A=\left(7^2+8\right).8.\left(7^2+6\right)\) Là số chia hết cho 8

Câu 2/  Chứng tỏ :  (2n + 5) chia hết cho (n + 1)  .Câu này đề sai .Khi n = 1 đã sai rồi . 

Câu 3 : Giải tương tự câu 1

12 tháng 6 2015

Sai đề ruj A=137256 ko thể chia hết cho 50

7 tháng 8 2016

a) \(A=2+2^2+2^3+2^4+...+2^{60}\)

        \(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

        \(=2\left(2+1\right)+2^3\left(2+1\right)+...+2^{59}\left(2+1\right)\)

        \(=3\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(A⋮3\)

b) \(A=2+2^2+2^3+2^4+...+2^{60}\)

        \(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)

        \(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\)

        \(=5\left(2+2^2+...+2^{58}\right)⋮5\)

Vậy \(A⋮5\)

c) \(A=2+2^2+2^3+2^4+...+2^{60}\)

        \(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

        \(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+..+2^{58}\left(1+2+2^2\right)\)

        \(=7\left(2+2^4+...+2^{58}\right)⋮7\)

Vậy \(A⋮7\)