Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(A=2+2^2+2^3+2^4+...+2^{60}\)
Chứng tỏ
a, A chia hết cho 3
b, A chia hết cho 5
c, A chia hết cho 7
a) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(A⋮3\)
bai 1 :x la so chan (chia het cho 2)
x la so le (khong chia het cho 2
bai 2:tong cua 5 so tu nhien lien tiep chia het cho 5 vi tong 5 so tu nhien lien tiep la so co tan cung 0,5
bai 3:b,xy+yx=(x nhan 10)+y+(y nhan 10)+x=10x+y+10y+x=11x+11y.11x va 11y chia het cho 11. vay xy+yx chia het cho 11
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
a) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(2+1\right)+2^3\left(2+1\right)+...+2^{59}\left(2+1\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(A⋮3\)
b) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\)
\(=5\left(2+2^2+...+2^{58}\right)⋮5\)
Vậy \(A⋮5\)
c) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+..+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
Vậy \(A⋮7\)