Cho tam giác ABC( AB >1/2 AC) , D là trung điểm của AC. Lấy E thuộc AB sao cho BE=CD. Gọi M,N,O lần lượt là trung điểm của BC,DE,CE. Chứng minh: b) tam giác MON cân và góc MNO = 1/2 góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ACE có: AD= DC; EO=OC => DO là đường trung bình của tam giác ACE => DO song song AE song song AB
Xét tam giác ECB có: BM=MC; CO=OE => OM là đường trung bình của tam giác ECB => OM song song EB song song AB
Qua một điểm O chỉ có duy nhất một đường thẳng song song với AB => DO trùng với MO hay D,O,M thẳng hàng.
a: Xét ΔECB có
M,O lần lượt là trung điểm của CB,CE
nên MO là đường trung bình
=>MO//EB và MO=EB/2
hay MO//AB(1)
Xét ΔCAE có
D,O lần lượt là trung điểm của CA,CE
nên DO là đường trung bình
=>DO//AE và DO=AE/2
hay DO//AB(2)
Từ (1) và (2) suy ra M,O,D thẳng hàng
b: Xét ΔDEC có
O là trung điểm của CE
N là trung điểm của ED
Do đó: ON là đường trung bình
=>ON=DC/2=EB/2=OM
hay ΔONM cân tại O
a: Xét ΔECB có
M,O lần lượt là trung điểm của CB,CE
nên MO là đường trung bình
=>MO//EB và MO=EB/2
hay MO//AB(1)
Xét ΔCAE có
D,O lần lượt là trung điểm của CA,CE
nên DO là đường trung bình
=>DO//AE và DO=AE/2
hay DO//AB(2)
Từ (1) và (2) suy ra M,O,D thẳng hàng
b: Xét ΔDEC có
O là trung điểm của CE
N là trung điểm của ED
Do đó: ON là đường trung bình
=>ON=DC/2=EB/2=OM
hay ΔONM cân tại O
a: Xét ΔECB có
M,O lần lượt là trung điểm của CB,CE
nên MO là đường trung bình
=>MO//EB và MO=EB/2
hay MO//AB(1)
Xét ΔCAE có
D,O lần lượt là trung điểm của CA,CE
nên DO là đường trung bình
=>DO//AE và DO=AE/2
hay DO//AB(2)
Từ (1) và (2) suy ra M,O,D thẳng hàng
b: Xét ΔDEC có
O là trung điểm của CE
N là trung điểm của ED
Do đó: ON là đường trung bình
=>ON=DC/2=EB/2=OM
hay ΔONM cân tại O
a: Xét ΔECB có
M,O lần lượt là trung điểm của CB,CE
nên MO là đường trung bình
=>MO//EB và MO=EB/2
hay MO//AB(1)
Xét ΔCAE có
D,O lần lượt là trung điểm của CA,CE
nên DO là đường trung bình
=>DO//AE và DO=AE/2
hay DO//AB(2)
Từ (1) và (2) suy ra M,O,D thẳng hàng
b: Xét ΔDEC có
O là trung điểm của CE
N là trung điểm của ED
Do đó: ON là đường trung bình
=>ON=DC/2=EB/2=OM
hay ΔONM cân tại O
a: Xét ΔECB có
M,O lần lượt là trung điểm của CB,CE
nên MO là đường trung bình
=>MO//EB và MO=EB/2
hay MO//AB(1)
Xét ΔCAE có
D,O lần lượt là trung điểm của CA,CE
nên DO là đường trung bình
=>DO//AE và DO=AE/2
hay DO//AB(2)
Từ (1) và (2) suy ra M,O,D thẳng hàng
b: Xét ΔDEC có
O là trung điểm của CE
N là trung điểm của ED
Do đó: ON là đường trung bình
=>ON=DC/2=EB/2=OM
hay ΔONM cân tại O
a: Xét ΔECB có
M,O lần lượt là trung điểm của CB,CE
nên MO là đường trung bình
=>MO//EB và MO=EB/2
hay MO//AB(1)
Xét ΔCAE có
D,O lần lượt là trung điểm của CA,CE
nên DO là đường trung bình
=>DO//AE và DO=AE/2
hay DO//AB(2)
Từ (1) và (2) suy ra M,O,D thẳng hàng
b: Xét ΔDEC có
O là trung điểm của CE
N là trung điểm của ED
Do đó: ON là đường trung bình
=>ON=DC/2=EB/2=OM
hay ΔONM cân tại O
a: Xét ΔECB có
M,O lần lượt là trung điểm của CB,CE
nên MO là đường trung bình
=>MO//EB và MO=EB/2
hay MO//AB(1)
Xét ΔCAE có
D,O lần lượt là trung điểm của CA,CE
nên DO là đường trung bình
=>DO//AE và DO=AE/2
hay DO//AB(2)
Từ (1) và (2) suy ra M,O,D thẳng hàng
b: Xét ΔDEC có
O là trung điểm của CE
N là trung điểm của ED
Do đó: ON là đường trung bình
=>ON=DC/2=EB/2=OM
hay ΔONM cân tại O
a: Xét ΔECB có
M,O lần lượt là trung điểm của CB,CE
nên MO là đường trung bình
=>MO//EB và MO=EB/2
hay MO//AB(1)
Xét ΔCAE có
D,O lần lượt là trung điểm của CA,CE
nên DO là đường trung bình
=>DO//AE và DO=AE/2
hay DO//AB(2)
Từ (1) và (2) suy ra M,O,D thẳng hàng
b: Xét ΔDEC có
O là trung điểm của CE
N là trung điểm của ED
Do đó: ON là đường trung bình
=>ON=DC/2=EB/2=OM
hay ΔONM cân tại O
góc MON=góc NOE+góc EOM
=góc DCE+180 độ-góc MOC
=góc ACE+180 độ-góc BEC
=góc ACE+góc AEC
=180 độ-góc BAC
mà 2 góc MNO=180 độ-góc MON
nên 2 góc MNO=góc BAC
=>góc MNO=góc BAC/2