Cho hai số nguyên a>b thỏa mãn (ab-1, a+b)=(ab+1, a-b)=1. CMR: (a+b)2 + (ab-1)2 không là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc
Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p
\(\Rightarrow a^2-b^2⋮p\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).
+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)
+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)
Do đó \(\left(a^2+1,b^2+1\right)=1\).
Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)
Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).
Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.
Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.
Vậy ....
Em không chắc đâu ạ.
\(PT\Leftrightarrow a^2+b^2+1-2ab-2a-2b=0\)
\(\Leftrightarrow\left(a-b\right)^2-2\left(a+b\right)+1=0\)
Pt có nghiệm \(\Leftrightarrow\Delta'=\left(a+b\right)^2-\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow4ab\ge0\Leftrightarrow ab\ge0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)
Với a = 0 thì \(b^2-2b+1=0\Leftrightarrow\left(b-1\right)^2=0\Leftrightarrow b=1\)
Khi đó a,b là hai số chính phương liên tiếp (1)
Tương tự ta cũng có với b = 0 thì a = 1.
Khi đó a,b là hai số chính phương liên tiếp (2)
Từ (1) và (2) ta có đpcm.
vì a+b=-2 suy ra -2-a
suy ra ab-1=a(-2-a)-1
vì ab -1 là scp
suy ra a(-2-a)-1 là scp
mà a(-2-a)-1 =-2a-a^2-1
=-(a^2+a+a+1)
= -[(a^2+a)+(a+1)]
=-[a(a+1)+(a+1)]
=-(a+1)^2
suy ra -(a+1)^2 là scp
vì (a+1)^2>=0 với mọi a
suy ra -(a+1)^2<= 0
mà -(a+1)^2 là scp
suy ra -(a+1)^2=0
suy ra a=-1
suy ra b=-1
vậy a=b=-1
CHÚC BẠN HỌC TỐT
\(M=\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)\)
\(=\left[b\left(a+c\right)+a\left(a+c\right)\right]\left[a\left(b+c\right)+b\left(b+c\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]\)
\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)
\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
=>đpcm
Mọi người giúp em với, em cần gấp lắm ạ. Em cảm ơn mọi người nhiều ạ