Cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2016
Tìm min của \(\frac{a+b}{a.c+b.c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Am-Gm ta được:
\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab^2c}{ca}}=2b^2\)
\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{abc^2}{ab}}=2c^2\)
\(\dfrac{ab}{c}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{a^2bc}{bc}}=2a^2\)
\(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a^2+b^2+c^2=1\)
Vậy giá trị nhỏ nhất của \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}=1\)
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
cái này nếu chia cho c thì tức là công nhận định lí r vì chia c = *c^-1 ở 2 vế r. Ở nước ngoài mình sẽ k đc chứng minh như vậy. Mình sẽ chứng minh a*c =a + a + a +....+a, b*c cũng thế. c lần a = c lần b vì a=b theo tính chất giao hoán vậy nên ac=bc
Theo tính chất của tỉ lệ thức
`a/b=c/d -> a*d=b*c`
Xét các đ/án trên `-> C.`