Cho ΔABC cân tại A (∠A < 90 độ ) , đường cao BD và CE cắt nhau tại H
a) Chứng minh : ΔABD = ΔACE
b) Chứng minh : ΔAED cân
c) Chứng minh : AH là trung trực của ED
d) Trên tia đối của DB lấy điểm K sao cho DK=DB . Chứng minh : ∠ECB=∠DKC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a). Xét ΔABD và ΔBCE có: ∠ ADB = ∠ AEC = 90º (gt)
BA = AC (gt)
∠BAC chung
⇒ ΔABD = ΔACE (cạnh huyền – góc nhọn)
b). ΔABD = ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (ΔABC cân tại A )
⇒ ∠ABC – ∠ABD = ∠ACB – ∠ACE
=> ∠HBC = ∠HCB
⇒ ΔBHC là tam giác cân
c). ΔHDC vuông tại D nên HD <HC
mà HB = HC (ΔAIB cân tại H)
=> HD < HB
d). Gọi I là giao điểm của BN và CM
Xét Δ BNH và Δ CMH có:
BH = CH (Δ BHC cân tại H)
∠ BHN = CHM(đối đỉnh)
NH = HM (gt)
=> Δ BNH = Δ CMH (c.g.c) ⇒ ∠HBN = ∠ HCM
Lại có: ∠ HBC = ∠ HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM => ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (Δ ABC cân tại A) (2)
HB = HC (Δ HBC cân tại H) (3)
Từ (1); (2) và (3) => 3 điểm I; A; H cùng nằm trên đường trung trực của BC
=> I; A; H thẳng hàng => các đường thẳng BN; AH; CM đồng quy
Gõ nhanh thế! Nguyệt Thần ra câu hỏi 19 phút trước là 5 phút sau có câu trả lời
a: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
HA=HE
=>ΔBHA=ΔBHE
b: Xét ΔBAD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại A
c: Xét tứ giác ABED có
H là trung điểm chung của AE và BD
=>ABED là hình bình hành
=>DE//AB
=>DE vuông góc AC
Xét ΔCAE có
ED,CH là đường cao
ED cắt CH tại D
=>D là trực tâm
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔBHC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔBHC cân tại H
c: Ta có: AB=AC
HB=HC
Do đó: AH là đường trung trựuc của BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc A chung
Do đó: ΔABD=ΔACE
b: Xét ΔADE có AD=AE
nên ΔADE cân tại A
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
AD=AE
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
mà AD=AE
nên AH là đường trung trực của ED