K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

ADBDT Cauchy:

2(x^2+y^2)>=(x+y)^2

Dau = khi x=y

31 tháng 8 2018

Ta có : x + y = 1 => y = 1 - x

Do đó: \(0\le x\le1\)

\(A=x^2+\left(1-x\right)^2=2x^2-2x+1\)

\(=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Min A = 1/2

Dấu = xảy ra khi: \(x=y=\frac{1}{2}\)

Do \(0\le x\le1\) nên \(x\left(x-1\right)\le0\)

\(\Rightarrow A=2x\left(x-1\right)+1\le1\)

Max A =1

Dấu = xảy ra khi: \(\orbr{\begin{cases}x=1\Rightarrow y=0\\x=0\Rightarrow y=1\end{cases}}\)

=.= hok tốt!!

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$

Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$

--------------

Tìm max:

$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$

Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$

$\Rightarrow A=36-2(xy+yz+xz)\leq 36$

Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24

1 tháng 12 2019

Em ko chắc lắm đâu, tại yếu dạng điểm rơi tại biên này lắm.

*Tìm min

Ta có: \(S\ge x^2+y^2+z^2+\frac{3}{2}xyz\) (cái này dễ chứng minh) (Đẳng thức xảy ra khi có một số = 0 (hoặc 2 số "=" 0) )

Ta chứng minh: \(x^2+y^2+z^2+\frac{3}{2}xyz\ge\frac{9}{2}=\frac{\left(x+y+z\right)^2}{2}\)

\(\Leftrightarrow x^2+y^2+z^2+3xyz\ge2xy+2yz+2zx\)

Do \(\left[x\left(y-1\right)\left(z-1\right)\right]\left[y\left(z-1\right)\left(x-1\right)\right]\left[z\left(x-1\right)\left(y-1\right)\right]\)

\(=xyz\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2\ge0\) nên tồn tại ít nhất 1 thừa số không âm. Ở đây em sẽ chứng minh trường hợp \(x\left(y-1\right)\left(z-1\right)\ge0\). Các trường hợp còn lại chứng minh tương tự.

Do \(x\left(y-1\right)\left(z-1\right)\ge0\Rightarrow3xyz\ge3xy+3xz-3x\)

Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+zx-3x-2yz\ge0\)

\(\Leftrightarrow x\left(x+y+z\right)+\left(y-z\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\) và các hoán vị.

*Tìm Max:

Chưa nghĩ ra.

1 tháng 12 2019

Chết,bài tìm min nhầm chút:(dòng 10)

Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+yz-3x-2yz\ge0\)

Ta có;\(VT=x\left(x+y+z-3\right)+\left(y-z\right)^2=\left(y-z\right)^2\ge0\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\)

Như vầy nha!

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:
Áp dụng BĐT AM-GM:
$2A=2x^2y^2(x^2+y^2)=xy.[2xy(x^2+y^2)]\leq \left(\frac{x+y}{2}\right)^2.\left(\frac{2xy+x^2+y^2}{2}\right)^2$

$\Leftrightarrow 2A\leq \frac{(x+y)^6}{16}=\frac{1}{16}$

$\Rightarrow A\leq \frac{1}{32}$
Vậy $A_{\max}=\frac{1}{32}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$