Rút gọn biếu thức:
(x+y-z)2-(x-z)2-2xy+2yz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\frac{x-y+z}{x-y-z}\)
x2 +y2 +z2 -2xy-2zx-2yz=(x-y-z)2 -4yz=(x-y-z)2 - \(2.\sqrt{yz^2}\)=\(\left(x-y-z-2\sqrt{yz}\right)+\left(x-y-z+2\sqrt{yz}\right)\)
x2 -2xy - y2 -z2 =(x-y)2 -z2 =(x-y-z)(x-y+z)
\(B=\dfrac{\left(x+y+z\right)^2}{x^2-\left(y^2+2yz+z^2\right)}=\dfrac{\left(x+y+z\right)^2}{x^2-\left(y+z\right)^2}\)
\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x-y-z\right)}=\dfrac{x+y+z}{x-y-z}\)
c) hang dang thuc ( x -y+z)^2
o duoi phan h hang dang thuc luon
a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)
mau la (x-1)(2x^2 -x-3)
b ) k nhin dc de
\(x^2+2xy+y^2+y^2+2yx+z^2+y^2+2y+1=0\)
\(\left(x+y\right)^2+\left(y+z\right)^2+\left(y+1\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> x+y=0 và y+z=0 và y+1=0
<=> x-1=0 và -1+z=0 và y=-1
<=>x=z=1 và y=-1