K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Lời giải:

a) ĐK: \(x>0; x\neq 25; x\neq 36\)

PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)

\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)

\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)

Vậy.......

b)

ĐK: \(x\geq \frac{-1}{2}\)

PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)

\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)

c)

ĐK: \(x\geq 2\)

PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)

\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)

\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)

NV
13 tháng 11 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow4x^2-4x+1-\left(2x-\sqrt{4x-1}\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2-\frac{\left(2x-1\right)^2}{2x+\sqrt{4x-1}}=0\)

\(\Leftrightarrow\left(2x-1\right)^2\left(1-\frac{1}{2x+\sqrt{4x-1}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\2x+\sqrt{4x-1}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{4x-1}=1-2x\) (\(x\le\frac{1}{2}\))

\(\Leftrightarrow4x-1=\left(1-2x\right)^2\)

\(\Leftrightarrow4x-1=4x^2-4x+1\)

\(\Leftrightarrow2x^2-4x+1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{2+\sqrt{2}}{2}\left(l\right)\\x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)

NV
13 tháng 11 2019

b/

Đặt \(3x^2-2x+2=a>0\) ta được:

\(\sqrt{a+7}+\sqrt{a}=7\)

\(\Leftrightarrow2a+7+2\sqrt{a^2+7a}=49\)

\(\Leftrightarrow\sqrt{a^2+7a}=21-a\) (\(a\le21\))

\(\Leftrightarrow a^2+7a=\left(21-a\right)^2\)

\(\Leftrightarrow a^2+7a=a^2-42a+441\)

\(\Rightarrow a=9\Rightarrow3x^2-2x+2=9\)

\(\Leftrightarrow3x^2-2x-7=0\Rightarrow x=\frac{1\pm\sqrt{22}}{3}\)

29 tháng 11 2019

ĐK : \(x\ne-\frac{1}{2}\);\(x\ge0\)

\(\frac{\left(2x^2+8x+1\right)^2}{\left(2x+1\right)^2}=25x\)

\(25\left(4x^2+4x+1\right)=\left(4x^4+64x^2+1+32x^3+4x^2+16x\right)\)

\(4x^4+32x^3-32x^2-84x-24=0\)

giải tiếp đc nghiệm

NV
26 tháng 9 2019

ĐKXĐ:

a/ \(x-2020>0\Rightarrow x>2020\)

b/ \(x\ne0\)

c/ \(3x+5< 0\Rightarrow x< -\frac{5}{3}\)

d/ \(\frac{x-3}{1-x}\ge0\Rightarrow1< x\le3\)

Bài 2: ĐKXĐ tự tìm

a/ \(2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\Rightarrow\sqrt{2x}=\frac{28}{13}\)

\(\Rightarrow x=\frac{392}{169}\)

b/ \(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\Rightarrow x=9\)

c/ \(3\sqrt{2x+1}>15\Rightarrow\sqrt{2x+1}>5\)

\(\Rightarrow2x+1>25\Rightarrow x>12\)

d/ \(\sqrt{x}+1>12\Rightarrow\sqrt{x}>11\Rightarrow x>121\)

a,

\(\Leftrightarrow\sqrt{1-x}=\frac{x-1}{\sqrt{6-x}+\sqrt{-5-2x}}\)

\(\Leftrightarrow-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\\-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\end{cases}}\)

b,tự nàm

c,

\(\Leftrightarrow64x^2-64x-64=64\sqrt{8x+1}\)

\(\Leftrightarrow\left(8x+1\right)^2=10\left(8x+1\right)+64\sqrt{8x+1}+55\)

đặt \(\sqrt{8x+1}=a\)

=>a4=10a2+64a+55

nhận thấy phương trình có dạng x4=ax2+bx+c

tìm số m sao cho b2-4(2m+a)(m2+c)=0

sau đó đưa về (x2+m)2=k2 với k là 1 số bất kì,sau đó giải ra

5 tháng 9 2017

b)đk \(x\ge1\)

 \(\sqrt{1+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}=\sqrt{\frac{\left(x+1\right)^2+x^2.\left(x+1\right)^2+x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)

\(=\sqrt{\frac{x^4+2x^3+3x^2+2x+1}{\left(x+1\right)^2}}+\frac{x}{x+1}\)

\(=\sqrt{\frac{\left(x^2+x+1\right)^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)

\(=\frac{x^2+x+1}{x+1}+\frac{x}{x+1}=x+1\)

\(\Rightarrow\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}=2013\)

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2013\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2013\)

\(\Leftrightarrow x+\left|x-2\right|=2014\)

giai 2 pt 

pt1 x+x-2=2014

x=1008

pt2 x+2-x=2014(vô lý)

20 tháng 8 2020

a) \(\sqrt{2x^2-\sqrt{2}x+\frac{1}{4}}=\sqrt{2}x\)

\(2x^2-\sqrt{2}x+\frac{1}{4}=2x^2\)

\(-\sqrt{2}x+\frac{1}{4}=0\)

\(\sqrt{2}x=\frac{1}{4}\)

\(x=\frac{\sqrt{2}}{8}\)

20 tháng 8 2020

b) \(\sqrt{4x+8}+\frac{1}{3}\sqrt{9x+18}=3\sqrt{\frac{x+2}{4}}+\sqrt{2}\)

\(2\sqrt{x+2}+\frac{1}{3}\cdot3\sqrt{x+2}=\frac{3\sqrt{x+2}}{2}+\sqrt{2}\)

\(3\sqrt{x+2}-\frac{3\sqrt{x+2}}{2}=\sqrt{2}\)

\(\frac{3\sqrt{x+2}}{2}=\sqrt{2}\)

\(\frac{3}{2}=\frac{\sqrt{2}}{\sqrt{x-2}}\)

\(\sqrt{\frac{9}{4}}=\sqrt{\frac{2}{x+2}}\)

\(\frac{2}{x+2}=\frac{9}{4}\)

\(x+2=\frac{8}{9}\)

\(x=\frac{8}{9}-2=-\frac{10}{9}\)

24 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)