K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

thế lớp mấy mà ko làm đc

4 tháng 8 2019

\(VT=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y+z-x\right)^3+3\left(x+y+z\right)x\left(x+y+z-x\right)-\left(y^3+z^3\right)\)

\(=\left(y+z\right)^3+3\left(x+y+z\right)x\left(y+z\right)-\left(y+z\right)\left(y^2-yz+z^2\right)\)

\(=\left(y+z\right)\left(y^2+2yz+z^2+3x^2+3xy+3xz-y^2+yz-z^2\right)\)

\(=\left(y+z\right)\left(3yz+3x^2+3xy+3xz\right)\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)=VP\left(\text{ĐPCM}\right)\)

6 tháng 8 2018

Ai tích mình mình tích lại

11 tháng 9 2019

Đoàn Thị Cẩm Vân!Bn chưa làm gì mà đòi k vậy.Ko đăng linh tinh bn nhé!

3 tháng 9 2018

\(VT=\left(x+y+z\right)^3-x^2-y^3-z^3\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)=VP\)

=> đpcm

=.= hok tốt!!

3 tháng 9 2018

Đặt: \(A=\left(x+y+z\right)^3-x^3-y^3-z^3=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Xét: \(\left(x+y+z\right)^3=\left[\left(x+y\right)+z\right]^3=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)\)

\(=\left(x^3+y^3+z^3\right)+3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=\left(x^3+y^3+z^3\right)+3\left(x+y\right)\left[\left(xy+yz\right)+\left(xz+z^2\right)\right]\)

\(=\left(x^3+y^3+z^3\right)+3\left(x+y\right)\left[y\left(x+z\right)+z\left(x+z\right)\right]\)

\(=\left(x^3+y^3+z^3\right)+3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

=> ĐPCM

2 tháng 1 2023

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)

19 tháng 1 2021

Cách này đòi hỏi sự kiên nhẫn và kinh nghiệm.

Cần chứng minh:

\({\dfrac {4 \left( xy+zx+yz \right) \left( x+y+z \right) ^{7}}{ 243}}- \left( {x}^{3}+{y}^{3}+{z}^{3} \right) \left( {x}^{3}{y}^{3}+{ x}^{3}{z}^{3}+{y}^{3}{z}^{3} \right) \geqslant 0.\quad(1) \) 

Đặt 

\(\text{M}=4\,{z}^{7}+ \left( 757\,x+757\,y \right) {z}^{6}+84\, \left( x+y \right) ^{2}{z}^{5}+140\, \left( x+y \right) ^{3}{z}^{4}\\\quad\quad+ \left( 1598 \,{x}^{4}+4205\,{x}^{3}y+4971\,{x}^{2}{y}^{2}+4205\,x{y}^{3}+1598\,{y} ^{4} \right) {z}^{3}\\\quad \quad+84\, \left( x+y \right) ^{5}{z}^{2}+28\, \left( x +y \right) ^{6}z\geqslant 0 \)

Ta có:

\((1)\Leftrightarrow \dfrac{1}{243}xy\cdot M+{\dfrac { \left( x+y \right) \left( {x}^{2}+11\,xy+{y}^{2} \right) \left( 2\,x-y \right) ^{2} \left( x-2\,y \right) ^{2}xy}{243}}\\\quad\quad+{ \dfrac { \left( x+y \right) z \left( x+y+z \right) \left( {x}^{2}+2\,x y+11\,zx+{y}^{2}+11\,yz+{z}^{2} \right) \left( 2\,y-z+2\,x \right) ^{ 2} \left( y-2\,z+x \right) ^{2}}{243}}\geqslant 0. \)

Đẳng thức xảy ra khi $...$

\(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{3}{4}\)

\(=\frac{x^3}{1+z+y+yz}+\frac{y^3}{1+x+z+xz}+\frac{z^3}{1+y+x+xy}\)

\(=\frac{x^3}{1+x+y+2y}\ge\frac{x}{2}\Rightarrow TổngBPT\ge\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\ge\frac{2}{3}\left(đpcm\right)\)

(Không chắc à nha)

3 tháng 2 2020

Ta có : \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)

\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\frac{6x-y-z-2}{8}\left(1\right)\)

Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\frac{6y-z-x-2}{8}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{6z-x-y-2}{8}\left(3\right)\end{cases}}\)

Từ (1) , (2) và (3) 

\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)

\(\ge\frac{6x-y-z-2}{8}+\frac{6y-z-x-2}{8}+\frac{6z-x-y-2}{8}\)

\(=\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)

Chúc bạn học tốt !!!