K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Lời giải:

Ta có:

\(2x^2+y^2+z^2-2x-2xy+2z+2=0\)

\(\Leftrightarrow (x^2+y^2-2xy)+(x^2-2x+1)+(z^2+2z+1)=0\)

\(\Leftrightarrow (x-y)^2+(x-1)^2+(z+1)^2=0(*)\)

\((x-y)^2; (x-1)^2; (z+1)^2\geq 0, \forall x,y,z\in\mathbb{R}\)

Do đó, để $(*)$ xảy ra thì \((x-y)^2=(x-1)^2=(z+1)^2=0\)

\(\Rightarrow \left\{\begin{matrix} x=y=1\\ z=-1\end{matrix}\right.\)

\(\Rightarrow P=x+y+z=1\)

7 tháng 12 2019

5 tháng 8 2018

      \(2x^2+y^2+z^2-2x-2xy+2z+2=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(z+1\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(x-1\right)^2\ge0\forall x\\\left(z+1\right)^2\ge0\forall z\end{cases}\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(z+1\right)^2\ge0\forall x;y;z}\)

Do đó: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\x-1=0\\z+1=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=1\\z=-1\end{cases}}}\)

Vậy \(x+y+z=1+1+\left(-1\right)=2\)

Chúc bạn học tốt.

20 tháng 2 2018

Chọn đáp án A

29 tháng 8 2017


22 tháng 8 2019

Chọn đáp án A

 

Do đó, P có thể nhận các giá trị nguyên là 0; -1

 

 

 

STUDY TIP

Trong biểu thức P vai trò của z khác x, y do đó, ta tìm cách rút x, y theo z từ điều kiện ban đầu. Từ đó quy về phương trình ẩn z và tìm điều kiện để phương trình có nghiệm

 

Phương trình (2), (3) là các phương trình mặt phẳng

Hai mặt phẳng này cắt nhau theo giao tuyến d có vecto chỉ phương là 

Phương trình (4) là phương trình mặt cầu (S) có tâm O(0;0;0) bán kính  R = 5

 

X, y, z tồn tại khi và chỉ khi d cắt (S)

 

Do đó P có thể nhận các giá trị nguyên là 0; -1

 

STUDY TIP

Các biểu thức liên hệ giữa x, y, z có dạng phương trình mặt phẳng, mặt cầu. Từ đó giúp ta nghĩ đến việc xét vị trí tương dối giữa mặt cầu, với đường thẳng và mặt phẳng

 

26 tháng 3 2017

8 tháng 3 2021

a) 3x . ( x-1 ) = 3x2 - 3x 

b) x3- 2x2+x = x2.( x-1 ) - x.( x-1 ) = (x-1).(x-1).x 

= (x-1)2.x 

c) x2- 2xy-9z2+y2

= (x2-2xy+y2 )-(3z)2

= (x-y)2-(3z)2

= ( x-y-3z).(x-y+3z)

thay vào ta có ( 6+4-90 ).(6+4+90 )=-80.100=-8000 

13 tháng 2 2020

\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)

=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)

=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)

=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)

=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)

Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)

NV
16 tháng 4 2021

\(B=\left(x^2+y^2+4+2xy-4x-4y\right)+\left(x^2+z^2+1+2xz-2x-2z\right)+\left(y^2-4y+4\right)+4\)

\(B=\left(x+y-2\right)^2+\left(x+z-1\right)^2+\left(y-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x+z-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\\z=1\end{matrix}\right.\)