K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Lời giải:

Ta có:

\(2x^2+y^2+z^2-2x-2xy+2z+2=0\)

\(\Leftrightarrow (x^2+y^2-2xy)+(x^2-2x+1)+(z^2+2z+1)=0\)

\(\Leftrightarrow (x-y)^2+(x-1)^2+(z+1)^2=0(*)\)

\((x-y)^2; (x-1)^2; (z+1)^2\geq 0, \forall x,y,z\in\mathbb{R}\)

Do đó, để $(*)$ xảy ra thì \((x-y)^2=(x-1)^2=(z+1)^2=0\)

\(\Rightarrow \left\{\begin{matrix} x=y=1\\ z=-1\end{matrix}\right.\)

\(\Rightarrow P=x+y+z=1\)

7 tháng 12 2019

5 tháng 8 2018

      \(2x^2+y^2+z^2-2x-2xy+2z+2=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(z+1\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(x-1\right)^2\ge0\forall x\\\left(z+1\right)^2\ge0\forall z\end{cases}\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(z+1\right)^2\ge0\forall x;y;z}\)

Do đó: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\x-1=0\\z+1=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=1\\z=-1\end{cases}}}\)

Vậy \(x+y+z=1+1+\left(-1\right)=2\)

Chúc bạn học tốt.

8 tháng 3 2021

a) 3x . ( x-1 ) = 3x2 - 3x 

b) x3- 2x2+x = x2.( x-1 ) - x.( x-1 ) = (x-1).(x-1).x 

= (x-1)2.x 

c) x2- 2xy-9z2+y2

= (x2-2xy+y2 )-(3z)2

= (x-y)2-(3z)2

= ( x-y-3z).(x-y+3z)

thay vào ta có ( 6+4-90 ).(6+4+90 )=-80.100=-8000 

NV
16 tháng 4 2021

\(B=\left(x^2+y^2+4+2xy-4x-4y\right)+\left(x^2+z^2+1+2xz-2x-2z\right)+\left(y^2-4y+4\right)+4\)

\(B=\left(x+y-2\right)^2+\left(x+z-1\right)^2+\left(y-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x+z-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\\z=1\end{matrix}\right.\)

29 tháng 11 2019

x 2 – 2xy – 4 z 2 +  y 2  = ( x 2  – 2xy +  y 2 ) – 4 z 2

      = x - y 2 - 2 z 2  = (x – y + 2z)(x – y – 2z)

Thay x = 6; y = -4; z= 45 vào biểu thức ta được:

[ 6- (- 4) + 2.45]. [6- (-4) – 2.45]

= (6 + 4 + 90)(6 + 4 – 90) = 100.(-80) = -8000

Sửa đề: \(P=x^{2008}+y^{2009}+z^{2010}\)

Ta có: x+y+z=1

nên \(\left(x+y+z\right)^3=1\)

\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)+1=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

mà 3>0

nên \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

Thay x=-y vào biểu thức \(x+y+z=1\), ta được:

\(-y+y+z=1\)

hay z=1

Thay x=-y và z=1 vào biểu thức \(x^2+y^2+z^2=1\), ta được:

\(\left(-y\right)^2+y^2+1=1\)

\(\Leftrightarrow y^2+y^2=0\)

\(\Leftrightarrow2y^2=0\)

hay y=0

Vì x=-y

và y=0

nên x=0

Thay x=0; y=0 và z=1 vào biểu thức \(P=x^{2008}+y^{2009}+z^{2010}\), ta được:

\(P=0^{2008}+0^{2009}+1^{2010}=1\)

Vậy: P=1

12 tháng 11 2022

nma ở trên cm y=-z mà. Nếu ở thay y=0 và z=1 vào thì nghĩa là 0 = -1 hả

`# \text {04th5}`

`a.`

`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`

`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`

`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`

`= 3xy - 1`

`b.`

\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)

`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`

`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`

`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`

`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`

`= -30`

Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.

24 tháng 9 2019

a) Tìm được A = (x- y)(x + 5y).

Thay x = 4 và y = -4 vào A tìm được A = -128.

b) Tìm được B = 9 ( x   - 1 ) 2 .

Thay x = - 4 vào B tìm được B = 81 4 .  

c) Tìm được C = (x - y)(y - z)(x - z).

Thay x = 6,y = 5 và z = 4 vào C tìm được C = 2.

d) Thay 10 = x +1 vào D và biến đổi ta được D = -1.