Cho 2x2 + y2 + z2 - 2x - 2xy + 2z + 2 =0. TÍnh giá trị biểu thức P = x+y+z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Do đó, P có thể nhận các giá trị nguyên là 0; -1
STUDY TIP |
Trong biểu thức P vai trò của z khác x, y do đó, ta tìm cách rút x, y theo z từ điều kiện ban đầu. Từ đó quy về phương trình ẩn z và tìm điều kiện để phương trình có nghiệm |
Phương trình (2), (3) là các phương trình mặt phẳng
Hai mặt phẳng này cắt nhau theo giao tuyến d có vecto chỉ phương là
Phương trình (4) là phương trình mặt cầu (S) có tâm O(0;0;0) bán kính R = 5
X, y, z tồn tại khi và chỉ khi d cắt (S)
Do đó P có thể nhận các giá trị nguyên là 0; -1
STUDY TIP |
Các biểu thức liên hệ giữa x, y, z có dạng phương trình mặt phẳng, mặt cầu. Từ đó giúp ta nghĩ đến việc xét vị trí tương dối giữa mặt cầu, với đường thẳng và mặt phẳng |
\(B=\left(x^2+y^2+4+2xy-4x-4y\right)+\left(x^2+z^2+1+2xz-2x-2z\right)+\left(y^2-4y+4\right)+4\)
\(B=\left(x+y-2\right)^2+\left(x+z-1\right)^2+\left(y-2\right)^2+4\ge4\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x+z-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\\z=1\end{matrix}\right.\)
Lời giải:
Ta có:
\(2x^2+y^2+z^2-2x-2xy+2z+2=0\)
\(\Leftrightarrow (x^2+y^2-2xy)+(x^2-2x+1)+(z^2+2z+1)=0\)
\(\Leftrightarrow (x-y)^2+(x-1)^2+(z+1)^2=0(*)\)
Vì \((x-y)^2; (x-1)^2; (z+1)^2\geq 0, \forall x,y,z\in\mathbb{R}\)
Do đó, để $(*)$ xảy ra thì \((x-y)^2=(x-1)^2=(z+1)^2=0\)
\(\Rightarrow \left\{\begin{matrix} x=y=1\\ z=-1\end{matrix}\right.\)
\(\Rightarrow P=x+y+z=1\)
Đáp án D
Phương pháp:
+ Tìm tâm và bán kính của mặt cầu
+ Xác định vị trí tương đối của mặt phẳng và mặt cầu để suy ra vị trí của điểm M
+ Tìm tọa độ của đường thẳng và mặt cầu thì ta giải hệ phương trình gồm phương trình đường thẳng và phương trình mặt cầu
Cách giải:
Mặt cầu (S) có tâm
nên mặt phẳng (P) không cắt mặt cầu (S).Khi đó điểm M thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là nhỏ nhất thì M là giao điểm của đường thẳng d đi qua I , nhận n P → = 2 ; - 1 ; 2 làm VTCP với mặt cầu.
Phương trình đường thẳng
Tọa độ giao điểm của đường thẳng d và mặt cầu (S) thỏa mãn hệ phương trình
\(2x^2+y^2+z^2-2x-2xy+2z+2=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(z^2+2z+1\right)=0\)
\(\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(z+1\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(x-1\right)^2\ge0\forall x\\\left(z+1\right)^2\ge0\forall z\end{cases}\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(z+1\right)^2\ge0\forall x;y;z}\)
Do đó: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\x-1=0\\z+1=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=1\\z=-1\end{cases}}}\)
Vậy \(x+y+z=1+1+\left(-1\right)=2\)
Chúc bạn học tốt.