K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

\(\left|8-x\right|=x^2-x\)

<=> \(\orbr{\begin{cases}8-x=x^2-x\\8-x=x-x^2\end{cases}}\)

<=> \(\orbr{\begin{cases}8=x^2\\8=2x-x^2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\pm2\sqrt{2}\\x\left(2-x\right)=8\end{cases}}\)

Tới đây bạn tự giải nhé,.

5 tháng 8 2018

ta có: |8-x|=x2-x

=> \(\orbr{\begin{cases}8-x=x^2-x\\8-x=x-x^2\end{cases}}\) 

(+) 8-x=x2-x 

<=> x2=8 <=> x=\(\sqrt{8}\)

(+) 8-x=x-x2

<=> x2-2x+8=0

<=> x2-2x+1+7 =0

<=> (x-1)2+7=0

mà (x-1)2\(\ge\) 0 \(\forall\)x nên (x-1)2+7>0

=> ptvn

vậy phương trình đã cho có 1 nghiệm là x=\(\sqrt{8}\)

4 tháng 5 2017

1/a/\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}}\)

Vậy ...................

b/ ĐKXĐ:\(x\ne2;x\ne5\)

.....\(\Rightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x^2-10x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(nhận\right)\\x=5\left(loại\right)\end{cases}}}\)

Vậy ..............

24 tháng 2 2022

`Answer:`

`1.`

a. \(\left(x+5\right)\left(2x+1\right)-x^2+25=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1-x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}}}\)

b. \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\left(ĐKXĐ:x\ne2;x\ne5\right)\)

\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow\frac{3x\left(x-5\right)-x\left(x-2\right)+3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)+3x=0\)

\(\Leftrightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\text{(Không thoả mãn)}\end{cases}}}\)

`2.`

\(ĐKXĐ:x\ne-m-2;x\ne m-2\)

Ta có: \(\frac{x+1}{x+2+m}=\frac{x+1}{x+2-m}\left(1\right)\)

a. Khi `m=-3` phương trình `(1)` sẽ trở thành: \(\frac{x+1}{x-1}=\frac{x+1}{x+5}\left(x\ne1;x\ne-5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{x-1}=\frac{1}{x+5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\-1=5\text{(Vô nghiệm)}\end{cases}}}\)

b. Để phương trình `(1)` nhận `x=3` làm nghiệm thì

\(\Leftrightarrow\hept{\begin{cases}\frac{3+1}{3+2-m}=\frac{3+1}{3+2-m}\\3\ne-m-2\\3\ne m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{5+m}=\frac{4}{5-m}\\m\ne\pm5\end{cases}}\Leftrightarrow\hept{\begin{cases}5+m=5-m\\m\ne\pm5\end{cases}}\Leftrightarrow m=0\)

12 tháng 8 2018

http://123link.pro/YqpQdeng

11 tháng 12 2021

có [x-y]2=1

suy ra [x-y]mũ 2= 1 mũ 2

suy ra x-1=1

x=1+1

x=2

11 tháng 12 2021

x = 2 nha bạn

24 tháng 7 2020

Ta có \(x\inƯ\left(30\right)\)\(\left(ĐKXĐ:x\le8\right)\)

\(< =>x\in\left\{1;2;3;5;6;10;15;30\right\}\)

Do \(x\le8\)suy ra ta có bộ số x thỏa mãn sau :

\(x\in\left\{1;2;3;5;6\right\}\)

24 tháng 7 2020

Trả lời :

Theo bài ta có :

\(30⋮x\Rightarrow x\inƯ\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\)

Mà \(x< 8\Rightarrow x\in\left\{1;2;3;5;6\right\}\)

1 tháng 11 2020

\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)

\(ĐKXĐ:\hept{\begin{cases}\sqrt{x^2+x-1}\ge0\\\sqrt{x-x^2+1}\ge0\end{cases}}\)

Vì \(\sqrt{x^2+x-1}\ge0\)

\(\Rightarrow\)Áp dụng bđt Cô-si ta có: \(1+\left(x^2+x-1\right)\ge2\sqrt{x^2+x-1}\)(1)

Tương tự ta có: \(1+\left(x-x^2+1\right)\ge2\sqrt{x-x^2+1}\)(2)

Cộng (1) và (2) ta có: 

\(1+\left(x^2+x-1\right)+1+\left(x-x^2+1\right)\ge2\sqrt{x^2+x-1}+2\sqrt{x-x^2+1}\)

\(\Leftrightarrow1+x^2+x-1+1+x-x^2+1\ge2.\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)

\(\Leftrightarrow2+2x\ge2\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)

\(\Leftrightarrow1+x\ge\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\)

\(\Leftrightarrow1+x\ge x^2-x+2\)

\(\Leftrightarrow x^2-x+2-1-x\le0\)

\(\Leftrightarrow x^2-2x+1\le0\)

\(\Leftrightarrow\left(x-1\right)^2\le0\)(3)

Vì \(\left(x-1\right)^2\ge0\forall x\)(4)

Từ (3) và (4) \(\Rightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Thay \(x=1\)vào ĐKXĐ ta thấy \(x=1\) thỏa mãn ĐKXĐ

Vậy \(x=1\)

1 tháng 11 2020

\(\sqrt{x+x-1}+\sqrt{x-x^2+1}=x\left(x-1\right)+2\left(đk:...\ge x\ge\frac{1}{2}\right)\)( giải bpt này ra x-x2+1>=0 là tìm đc số trong dấu ...)

\(< =>\sqrt{x+x-1}-1+\sqrt{x-x^2+1}-1=x\left(x-1\right)\)

\(< =>\frac{2x-2}{\sqrt{x+x-1}+1}+\frac{x-x^2}{\sqrt{x-x^2+1}+1}=x\left(x-1\right)\)

\(< =>\frac{2\left(x-1\right)}{\sqrt{x+x-1}+1}+\frac{x\left(x-1\right)}{-\sqrt{x-x^2+1}-1}-x\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(\frac{2}{\sqrt{x+x-1}+1}+\frac{x}{-\sqrt{x-x^2+1}-1}-x\right)=0\)

\(< =>x=1\)( bạn đánh giá phần trong ngoặc to = đk ban đầu nhé )

19 tháng 11 2015

bài của p hay trog sgk
 

16 tháng 4 2016

1/2.x+3/5.(x-2)=3

1/2.x+3/5.x-3/5.2=3

(1/2+3/5).x-6/5=15/5

(5/10+6/10).x=15/5+6/5

11/10.x =21/5

         x = 21/5:11/10

         x = 21/5.10/11

         x= 42/11

vậy x=42/11

16 tháng 4 2016

1/2 . x + 3/5 . ( x - 2 ) = 3 

1/2 . x + 3/5 . x - 3/5 . 2 = 3

( 1/2 + 3/5 ) . x - 6/5 = 15/5

( 5/10 + 6/10 ) . x = 15/5 + 6/5

11/10 . x = 21/5

           x = 21/5 : 11/10

           x = 21/5 . 10/11

          x = 42 / 11

Vậy x = 42/11

Đúng nha Chích Cute

Có 2 nghiệm 

Đặt B=0

=>x^2-9=0

=>x^2=9

=>x=3 hoặc x=-3

`B=x^2-9=0`

`-> x^2=0+9`

`-> x^2=9`

`-> x^2=(+-3)^2`

`-> x=+-3`

Vậy, đa thức `B` có `2` nghiệm là `x={3 ; -3}`.

\(4+2x\left(2x+4\right)=-x\)

\(4+4x^2+8x=-x\)

\(4+4x^2+8x+x=0\)

\(4+4x^2+9x=0\)

=> vô nghiệm